This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351126 #51 Feb 28 2022 10:12:49 %S A351126 4,6,4,6,4,6,4,6,4,6,4,10,4,6,4,6,4,8,4,6,4,6,4,10,4,6,4,6,4,6,4,6,4, %T A351126 6,4,10,4,6,4,6,4,6,4,6,4,6,4,10,4,6,4,6,4,8,4,6,4,6,4,12,4,6,4,6,4,6, %U A351126 4,6,4,6,4,10,4,6,4,6,4,6,4,6,4,6,4,10,4 %N A351126 a(n) = A195199(n) / n. %C A351126 a(n) = 4 for all odd n. For all even n, a(n) >= 6. %H A351126 Michael De Vlieger, <a href="/A351126/b351126.txt">Table of n, a(n) for n = 1..10000</a> %t A351126 a[n_] := Module[{d = DivisorSigma[0, n], k = 1}, While[DivisorSigma[0, k*n] <= 2*d, k++]; k]; Array[a, 100] (* _Amiram Eldar_, Feb 03 2022 *) %o A351126 (PARI) a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<=2*d, m+=n); m/n; \\ _Michel Marcus_, Feb 27 2022 %o A351126 (Python) %o A351126 from math import prod %o A351126 from collections import Counter %o A351126 from itertools import count %o A351126 from sympy import factorint %o A351126 def A351126(n): %o A351126 f = Counter(factorint(n)) %o A351126 d = prod(e+1 for e in f.values()) %o A351126 for m in count(2): %o A351126 if prod(e+1 for e in (f+Counter(factorint(m))).values()) > 2*d: %o A351126 return m # _Chai Wah Wu_, Feb 28 2022 %Y A351126 Cf. A000005, A195199, A337686. %K A351126 nonn %O A351126 1,1 %A A351126 _J. Lowell_, Feb 03 2022