cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351135 a(n) = Sum_{k=0..n} k! * k^(k*n) * Stirling1(n,k).

This page as a plain text file.
%I A351135 #16 Feb 04 2022 08:23:08
%S A351135 1,1,31,117716,103060088854,35762522985456876854,
%T A351135 7426384178533125493811949517898,
%U A351135 1294894823429942179301223205449027573956692920,253092741940931724343266089700550691376738432767085871485096840
%N A351135 a(n) = Sum_{k=0..n} k! * k^(k*n) * Stirling1(n,k).
%H A351135 Seiichi Manyama, <a href="/A351135/b351135.txt">Table of n, a(n) for n = 0..26</a>
%F A351135 E.g.f.: Sum_{k>=0} log(1 + k^k*x)^k.
%F A351135 a(n) ~ n! * n^(n^2). - _Vaclav Kotesovec_, Feb 03 2022
%t A351135 a[0] = 1; a[n_] := Sum[k! * k^(k*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 9, 0] (* _Amiram Eldar_, Feb 02 2022 *)
%o A351135 (PARI) a(n) = sum(k=0, n, k!*k^(k*n)*stirling(n, k, 1));
%o A351135 (PARI) my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k^k*x)^k)))
%Y A351135 Cf. A006252, A320083, A351133, A351134.
%Y A351135 Cf. A350721, A351117, A351138.
%K A351135 nonn
%O A351135 0,3
%A A351135 _Seiichi Manyama_, Feb 02 2022