This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351136 #23 Feb 04 2022 08:29:55 %S A351136 1,1,33,4760,1814698,1436035954,2041681617638,4736066140912728, %T A351136 16729538152432476024,85437808930634601070944, %U A351136 605822464949212598847700512,5774077466357788471179323050704,72030066703292325305595937373723040 %N A351136 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k). %H A351136 Seiichi Manyama, <a href="/A351136/b351136.txt">Table of n, a(n) for n = 0..160</a> %F A351136 E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k. %F A351136 a(n) ~ c * r^(2*n) * (1 + r*exp(2/r))^n * n^(3*n + 1/2) / exp(3*n), where r = 0.9414380538633895499299457441124149470954491698433... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-2/r) and c = 2.22047212763474863127102273073825610210704559048894... - _Vaclav Kotesovec_, Feb 03 2022 %t A351136 a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* _Amiram Eldar_, Feb 02 2022 *) %o A351136 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1)); %o A351136 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k))) %Y A351136 Cf. A007840, A320096, A351137. %Y A351136 Cf. A187755, A351133, A351138. %K A351136 nonn %O A351136 0,3 %A A351136 _Seiichi Manyama_, Feb 02 2022