cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351138 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(k*n) * Stirling1(n,k).

This page as a plain text file.
%I A351138 #17 Feb 04 2022 08:22:55
%S A351138 1,1,33,118484,103098352618,35763050751038414134,
%T A351138 7426387531294394110580641088438,
%U A351138 1294894837982331434068068403253026516109577144,253092742000650212462862632240661689524832716838851180353875064
%N A351138 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(k*n) * Stirling1(n,k).
%H A351138 Seiichi Manyama, <a href="/A351138/b351138.txt">Table of n, a(n) for n = 0..26</a>
%F A351138 E.g.f.: Sum_{k>=0} (-log(1 - k^k*x))^k.
%F A351138 a(n) ~ n! * n^(n^2). - _Vaclav Kotesovec_, Feb 03 2022
%t A351138 a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(k*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 9, 0] (* _Amiram Eldar_, Feb 02 2022 *)
%o A351138 (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(k*n)*stirling(n, k, 1));
%o A351138 (PARI) my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^k*x))^k)))
%Y A351138 Cf. A007840, A320096, A351136, A351137.
%Y A351138 Cf. A249584, A351135.
%K A351138 nonn
%O A351138 0,3
%A A351138 _Seiichi Manyama_, Feb 02 2022