cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351150 G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).

This page as a plain text file.
%I A351150 #6 Feb 03 2022 10:42:43
%S A351150 1,0,1,4,17,80,433,2724,19489,153536,1301601,11754084,112802097,
%T A351150 1150079056,12437130001,142144768324,1709041379393,21522252928000,
%U A351150 282920962675905,3873124754702660,55125031662585425,814541756986322128,12477752083406752881,197861190429889969252
%N A351150 G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).
%C A351150 Shifts 2 places left under 4th-order binomial transform.
%F A351150 a(0) = 1, a(1) = 0; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).
%t A351150 nmax = 23; A[_] = 0; Do[A[x_] = 1 + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A351150 a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]
%Y A351150 Cf. A000994, A004213, A351050, A351143, A351144, A351151, A351152.
%K A351150 nonn
%O A351150 0,4
%A A351150 _Ilya Gutkovskiy_, Feb 02 2022