This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351154 #13 Feb 10 2022 10:04:26 %S A351154 1,1,7,169,10388,1324344,305668180,116145817656,67770421715800, %T A351154 57594670663866124,68393751368082128320,109765035421144948709232, %U A351154 231657098706747226470685920,628412716450312334529486247152,2149132484027947970192241804640128,9113755489596517688997731211571700256 %N A351154 a(n) is the permanent of the n X n matrix M(n) that is defined as M[i,j,n] = A351153(n, min(i, j)) + abs(i - j). %C A351154 Conjectures: (Start) %C A351154 det(M(0)) = det(M(1)) = 1 and det(M(n)) = -(n - 2)! for n > 1. %C A351154 abs(det(M(n))) = abs(A159333(n-2)). (End) %e A351154 a(3) = 169: %e A351154 1 2 3 %e A351154 2 4 5 %e A351154 3 5 6 %e A351154 a(4) = 10388: %e A351154 1 2 3 4 %e A351154 2 5 6 7 %e A351154 3 6 8 9 %e A351154 4 7 9 10 %t A351154 A351153[n_,k_]:=n(k-1)-k(k-3)/2; M[i_,j_,n_]:=A351153[n,Min[i,j]]+Abs[i-j]; a[n_]:=Permanent[Table[M[i,j,n],{i,n},{j,n}]]; Join[{1},Array[a,15]] %o A351154 (PARI) t(n, k) = n*(k-1) - k*(k-3)/2; \\ A351153 %o A351154 a(n) = matpermanent(matrix(n, n, i, j, t(n, min(i, j)) + abs(i - j))); \\ _Michel Marcus_, Feb 03 2022 %Y A351154 Cf. A000142, A003983, A049581, A159333, A351153. %K A351154 nonn %O A351154 0,3 %A A351154 _Stefano Spezia_, Feb 02 2022