This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351156 #15 May 04 2022 04:56:51 %S A351156 1,0,0,0,4,0,0,70,560,0,5600,92400,369600,1201200,30830800,252252000, %T A351156 1210809600,19059040000,240143904000,1738184448000,22451549120000, %U A351156 342205063200000,3417705170880000,43866126368064000,732641268463104000,9234973972224000000 %N A351156 Expansion of e.g.f. (1 - x^3/6)^(-x). %F A351156 a(0) = 1; a(n) = (n-1)! * Sum_{k=2..floor((n+2)/3)} (3*k-2)/((k-1) * 6^(k-1)) * a(n-3*k+2)/(n-3*k+2)!. %F A351156 a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(k,n-3*k)|/(6^k*k!). %F A351156 a(n) ~ sqrt(2*Pi) * n^(n - 1/2 + 6^(1/3)) / (Gamma(6^(1/3)) * 3^(6^(1/3)) * exp(n) * 6^(n/3)). - _Vaclav Kotesovec_, May 04 2022 %o A351156 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3/6)^(-x))) %o A351156 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*log(1-x^3/6)))) %o A351156 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, (i+2)\3, (3*j-2)/((j-1)*6^(j-1))*v[i-3*j+3]/(i-3*j+2)!)); v; %o A351156 (PARI) a(n) = n!*sum(k=0, n\3, abs(stirling(k, n-3*k, 1))/(6^k*k!)); %Y A351156 Cf. A351155, A353227. %K A351156 nonn %O A351156 0,5 %A A351156 _Seiichi Manyama_, May 02 2022