This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351162 #26 Mar 16 2022 02:50:13 %S A351162 2048,30720,645120,7096320,92252160,1383782400,23524300800, %T A351162 446961715200,10280119449600,71960836147200,2086864248268800, %U A351162 64692791696332800,582235125266995200,21542699634878822400,883250685030031718400,37979779456291363891200,189898897281456819456000 %N A351162 a(1)=2048. For n>1, a(n) is the LCM of a(n-1) and A140635(a(n-1)). %C A351162 Similar sequences starting with smaller powers of 2 are known to converge after a few terms. %C A351162 This sequence is constant from n = 35. I.e.: a(n) = a(35) for all n >= 36. - _Daniel Suteu_, Mar 15 2022 %H A351162 Daniel Suteu, <a href="/A351162/b351162.txt">Table of n, a(n) for n = 1..36</a> %H A351162 Daniel Suteu, <a href="/A351162/a351162.pl.txt">Perl program</a> %e A351162 2048 has 12 divisors. LCM of 2048 and 60 (smallest number with 12 divisors) is 30720. %t A351162 f[n_] := Module[{d = DivisorSigma[0, n], k = 1}, While[DivisorSigma[0, k] != d, k++]; k]; a[1] = 2048; a[n_] := a[n] = LCM[a[n - 1], f[a[n - 1]]]; Array[a, 5] (* _Amiram Eldar_, Feb 04 2022 *) %Y A351162 Cf. A140635. %K A351162 nonn %O A351162 1,1 %A A351162 _J. Lowell_, Feb 04 2022 %E A351162 a(5)-a(7) from _Amiram Eldar_, Feb 04 2022 %E A351162 a(8)-a(17) from _Jon E. Schoenfield_ and _Daniel Suteu_, Mar 15 2022