This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351167 #36 Feb 17 2024 11:13:26 %S A351167 1,0,0,-1,-1,-1,-2,-2,-2,-3,-3,-3,-4,-4,-3,-4,-4,-4,-4,-3,-3,-4,-4,-3, %T A351167 -4,-4,-4,-5,-5,-5,-6,-6,-6,-7,-7,-7,-8,-8,-7,-7,-7,-7,-8,-6,-6,-7,-7, %U A351167 -6,-7,-7,-7,-8,-8,-7,-5,-4,-4,-5,-4,-3,-4,-4,-3,-3,-2,-2,-3,-3,-3,-4,-4,-4,-5,-5,-4,-5,-4,-4,-4,-4,-4,-5,-5,-4,-5,-5,-5,-6,-6,-5,-5,-5,-5,-6,-6,-6,-7,-7,-7,-7 %N A351167 Partial sums of A350682. %C A351167 Partial sums of Möbius values of triangular numbers under divisibility relation. %H A351167 Rohan Pandey and Harry Richman, <a href="https://arxiv.org/abs/2402.07934">The Möbius function of the poset of triangular numbers under divisibility</a>, arXiv:2402.07934 [math.NT], 2024. See pp. 2, 8. %t A351167 Accumulate@ With[{m = 100}, LinearSolve[Table[If[Mod[i (i + 1), j (j + 1)] == 0, 1, 0], {i, m}, {j, m}], UnitVector[m, 1]]] (* _Michael De Vlieger_, Feb 04 2022, after _Harry Richman_ at A350682 *) %o A351167 (Python) %o A351167 from sympy import * %o A351167 triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)]) %o A351167 def Mobius_Matrix(lst): %o A351167 zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst] %o A351167 return Matrix(zeta_array) ** -1 %o A351167 M = Mobius_Matrix(triangular_numbers) %o A351167 N = M[0, :].tolist() %o A351167 def sum_function(lst): %o A351167 sum_list = [sum(lst[:i+1]) for i in range(len(lst))] %o A351167 return sum_list %o A351167 S = sum_function(N[0]) %o A351167 print(S) %o A351167 (PARI) lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; my(w = vector(nn, k, m[k, 1])); vector(nn-1, k, sum(i=1, k, w[i]));} \\ _Michel Marcus_, Feb 16 2022 %Y A351167 Cf. A000217, A002321, A350682. %K A351167 sign %O A351167 1,7 %A A351167 _Rohan Pandey_, _Harry Richman_, Feb 03 2022