This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351192 #32 Feb 14 2022 13:37:23 %S A351192 1,1,2,1,1,2,2,3,3,1,2,3,4,1,2,3,4,5,1,1,2,2,3,3,4,4,5,5,6,6,1,1,2,2, %T A351192 3,3,4,4,5,5,6,6,7,7,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8, %U A351192 1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9 %N A351192 Irregular table of positive integers read by rows; the n-th row contains a(n) 1's, a(n) 2's, ..., a(n) n's, in that order. %C A351192 This sequence is a variant of A128117. %C A351192 The sequence is well defined: %C A351192 - the first row must start with a value 1, so a(1) = 1, and the first row is (1), %C A351192 - the second row must start with a value 1, so a(2) = 1, and the second row is (1, 2), %C A351192 - subsequent rows are determined by terms in prior rows. %H A351192 Rémy Sigrist, <a href="/A351192/b351192.txt">Table of n, a(n) for n = 1..10256</a> (rows for n = 1..68 flattened) %H A351192 Rémy Sigrist, <a href="/A351192/a351192.png">Scatterplot of the terms in rows for n = 1..500</a> %e A351192 The first terms and rows are: %e A351192 n a(n) n-th row %e A351192 -- ---- ---------------------------------------- %e A351192 1 1 1 %e A351192 2 1 1, 2 %e A351192 3 2 1, 1, 2, 2, 3, 3 %e A351192 4 1 1, 2, 3, 4 %e A351192 5 1 1, 2, 3, 4, 5 %e A351192 6 2 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6 %e A351192 7 2 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 %p A351192 a:= proc() local k, l: k, l:= 3, [1$2, 2]; %p A351192 proc(n) %p A351192 while nops(l)<n do %p A351192 l, k:= [l[], seq(i$a(k), i=1..k)], k+1 %p A351192 od: l[n] %p A351192 end %p A351192 end(): %p A351192 seq(a(n), n=1..95); # _Alois P. Heinz_, Feb 13 2022 %o A351192 (PARI) a = vector(95, n, 1); m=0; for (n=1, 9, for (k=1, n, for (t=1, a[n], print1 (a[m++]=k", ")))) %Y A351192 Cf. A001462, A128117. %K A351192 nonn,look,tabf %O A351192 1,3 %A A351192 _Rémy Sigrist_, Feb 09 2022