cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351196 Sum of the 8th powers of the primes dividing n.

This page as a plain text file.
%I A351196 #23 Jun 22 2024 18:38:45
%S A351196 0,256,6561,256,390625,6817,5764801,256,6561,390881,214358881,6817,
%T A351196 815730721,5765057,397186,256,6975757441,6817,16983563041,390881,
%U A351196 5771362,214359137,78310985281,6817,390625,815730977,6561,5765057,500246412961,397442,852891037441,256
%N A351196 Sum of the 8th powers of the primes dividing n.
%C A351196 Inverse Möbius transform of n^8 * c(n), where c(n) is the prime characteristic (A010051). - _Wesley Ivan Hurt_, Jun 22 2024
%H A351196 Seiichi Manyama, <a href="/A351196/b351196.txt">Table of n, a(n) for n = 1..10000</a>
%F A351196 a(n) = Sum_{p|n, p prime} p^8.
%F A351196 G.f.: Sum_{k>=1} prime(k)^8 * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Feb 16 2022
%F A351196 Additive with a(p^e) = p^8. - _Amiram Eldar_, Jun 20 2022
%F A351196 a(n) = Sum_{d|n} d^8 * c(d), where c = A010051. - _Wesley Ivan Hurt_, Jun 22 2024
%t A351196 Array[DivisorSum[#, #^8 &, PrimeQ] &, 50]
%t A351196 f[p_, e_] := p^8; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, Jun 20 2022 *)
%o A351196 (Python)
%o A351196 from sympy import primefactors
%o A351196 def A351196(n): return sum(p**8 for p in primefactors(n)) # _Chai Wah Wu_, Feb 05 2022
%Y A351196 Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
%Y A351196 Cf. A010051.
%K A351196 nonn
%O A351196 1,2
%A A351196 _Wesley Ivan Hurt_, Feb 04 2022