This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351197 #22 Jun 22 2024 18:42:05 %S A351197 0,512,19683,512,1953125,20195,40353607,512,19683,1953637,2357947691, %T A351197 20195,10604499373,40354119,1972808,512,118587876497,20195, %U A351197 322687697779,1953637,40373290,2357948203,1801152661463,20195,1953125,10604499885,19683,40354119,14507145975869,1973320,26439622160671,512,2357967374 %N A351197 Sum of the 9th powers of the primes dividing n. %C A351197 Inverse Möbius transform of n^9 * c(n), where c(n) is the prime characteristic (A010051). - _Wesley Ivan Hurt_, Jun 22 2024 %H A351197 Seiichi Manyama, <a href="/A351197/b351197.txt">Table of n, a(n) for n = 1..10000</a> %F A351197 a(n) = Sum_{p|n, p prime} p^9. %F A351197 G.f.: Sum_{k>=1} prime(k)^9 * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Feb 16 2022 %F A351197 Additive with a(p^e) = p^9. - _Amiram Eldar_, Jun 20 2022 %F A351197 a(n) = Sum_{d|n} d^9 * c(d), where c = A010051. - _Wesley Ivan Hurt_, Jun 22 2024 %t A351197 Array[DivisorSum[#, #^9 &, PrimeQ] &, 50] %t A351197 f[p_, e_] := p^9; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, Jun 20 2022 *) %o A351197 (Python) %o A351197 from sympy import primefactors %o A351197 def A351197(n): return sum(p**9 for p in primefactors(n)) # _Chai Wah Wu_, Feb 05 2022 %Y A351197 Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), this sequence (k=9), A351198 (k=10). %Y A351197 Cf. A010051. %K A351197 nonn %O A351197 1,2 %A A351197 _Wesley Ivan Hurt_, Feb 04 2022