cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351198 Sum of the 10th powers of the primes dividing n.

This page as a plain text file.
%I A351198 #29 Jun 22 2024 18:55:00
%S A351198 0,1024,59049,1024,9765625,60073,282475249,1024,59049,9766649,
%T A351198 25937424601,60073,137858491849,282476273,9824674,1024,2015993900449,
%U A351198 60073,6131066257801,9766649,282534298,25937425625,41426511213649,60073,9765625,137858492873,59049,282476273
%N A351198 Sum of the 10th powers of the primes dividing n.
%C A351198 Inverse Möbius transform of n^10 * c(n), where c(n) is the prime characteristic (A010051). - _Wesley Ivan Hurt_, Jun 22 2024
%H A351198 Seiichi Manyama, <a href="/A351198/b351198.txt">Table of n, a(n) for n = 1..10000</a>
%F A351198 a(n) = Sum_{p|n, p prime} p^10.
%F A351198 G.f.: Sum_{k>=1} prime(k)^10 * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Feb 16 2022
%F A351198 Additive with a(p^e) = p^10. - _Amiram Eldar_, Jun 20 2022
%F A351198 a(n) = Sum_{d|n} d^10 * c(d), where c = A010051. - _Wesley Ivan Hurt_, Jun 22 2024
%t A351198 Array[DivisorSum[#, #^10 &, PrimeQ] &, 50]
%t A351198 f[p_, e_] := p^10; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* _Amiram Eldar_, Jun 20 2022 *)
%o A351198 (Python)
%o A351198 from sympy import primefactors
%o A351198 def A351198(n): return sum(p**10 for p in primefactors(n)) # _Chai Wah Wu_, Feb 04 2022
%o A351198 (PARI) a(n) = vecsum(apply(x->x^10, factor(n)[, 1])); \\ _Michel Marcus_, Feb 05 2022
%Y A351198 Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), A351197 (k=9), this sequence (k=10).
%Y A351198 Cf. A010051, A030629 (p^10).
%K A351198 nonn
%O A351198 1,2
%A A351198 _Wesley Ivan Hurt_, Feb 04 2022