A351201 Numbers whose multiset of prime factors has a permutation without all distinct runs.
12, 18, 20, 28, 36, 44, 45, 48, 50, 52, 60, 63, 68, 72, 75, 76, 80, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 120, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 168, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204, 207, 208, 212, 216
Offset: 1
Keywords
Examples
The prime factors of 80 are {2,2,2,2,5} and the permutation (2,2,5,2,2) has runs (2,2), (5), and (2,2), which are not all distinct, so 80 is in the sequence. On the other hand, 24 has prime factors {2,2,2,3}, and all four permutations (3,2,2,2), (2,3,2,2), (2,2,3,2), (2,2,2,3) have distinct runs, so 24 is not in the sequence. The terms and their prime indices begin: 12: (2,1,1) 76: (8,1,1) 132: (5,2,1,1) 18: (2,2,1) 80: (3,1,1,1,1) 140: (4,3,1,1) 20: (3,1,1) 84: (4,2,1,1) 144: (2,2,1,1,1,1) 28: (4,1,1) 90: (3,2,2,1) 147: (4,4,2) 36: (2,2,1,1) 92: (9,1,1) 148: (12,1,1) 44: (5,1,1) 98: (4,4,1) 150: (3,3,2,1) 45: (3,2,2) 99: (5,2,2) 153: (7,2,2) 48: (2,1,1,1,1) 100: (3,3,1,1) 156: (6,2,1,1) 50: (3,3,1) 108: (2,2,2,1,1) 162: (2,2,2,2,1) 52: (6,1,1) 112: (4,1,1,1,1) 164: (13,1,1) 60: (3,2,1,1) 116: (10,1,1) 168: (4,2,1,1,1) 63: (4,2,2) 117: (6,2,2) 171: (8,2,2) 68: (7,1,1) 120: (3,2,1,1,1) 172: (14,1,1) 72: (2,2,1,1,1) 124: (11,1,1) 175: (4,3,3) 75: (3,3,2) 126: (4,2,2,1) 176: (5,1,1,1,1)
Links
- Mathematics Stack Exchange, What is a sequence run? (answered 2011-12-01)
Crossrefs
The version for run-lengths instead of runs is A024619.
These permutations are counted by A351202.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A283353 counts normal multisets with a permutation w/o all distinct runs.
A297770 counts distinct runs in binary expansion.
A351291 ranks compositions without all distinct runs.
Counting words with all distinct runs:
Programs
-
Mathematica
Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],!UnsameQ@@Split[#]&]!={}&]