cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351205 Numbers whose binary expansion does not have all distinct runs.

This page as a plain text file.
%I A351205 #15 Mar 14 2022 09:28:28
%S A351205 5,9,10,17,18,20,21,22,26,27,33,34,36,37,40,41,42,43,45,46,51,53,54,
%T A351205 58,65,66,68,69,72,73,74,75,76,77,80,81,82,83,84,85,86,87,89,90,91,93,
%U A351205 94,99,100,101,102,105,106,107,108,109,110,117,118,119,122,129
%N A351205 Numbers whose binary expansion does not have all distinct runs.
%H A351205 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a>
%e A351205 The terms together with their binary expansions begin:
%e A351205       5:     101     41:  101001     74: 1001010
%e A351205       9:    1001     42:  101010     75: 1001011
%e A351205      10:    1010     43:  101011     76: 1001100
%e A351205      17:   10001     45:  101101     77: 1001101
%e A351205      18:   10010     46:  101110     80: 1010000
%e A351205      20:   10100     51:  110011     81: 1010001
%e A351205      21:   10101     53:  110101     82: 1010010
%e A351205      22:   10110     54:  110110     83: 1010011
%e A351205      26:   11010     58:  111010     84: 1010100
%e A351205      27:   11011     65: 1000001     85: 1010101
%e A351205      33:  100001     66: 1000010     86: 1010110
%e A351205      34:  100010     68: 1000100     87: 1010111
%e A351205      36:  100100     69: 1000101     89: 1011001
%e A351205      37:  100101     72: 1001000     90: 1011010
%e A351205      40:  101000     73: 1001001     91: 1011011
%e A351205 For example, 77 has binary expansion 1001101, with runs 1, 00, 11, 0, 1, which are not all distinct, so 77 is in the sequence.
%p A351205 q:= proc(n) uses ListTools; (l-> is(nops(l)<>add(
%p A351205       nops(i), i={Split(`=`, l, 1)}) +add(
%p A351205       nops(i), i={Split(`=`, l, 0)})))(Bits[Split](n))
%p A351205     end:
%p A351205 select(q, [$1..200])[];  # _Alois P. Heinz_, Mar 14 2022
%t A351205 Select[Range[0,100],!UnsameQ@@Split[IntegerDigits[#,2]]&]
%o A351205 (Python)
%o A351205 from itertools import groupby, product
%o A351205 def ok(n):
%o A351205     runs = [(k, len(list(g))) for k, g in groupby(bin(n)[2:])]
%o A351205     return len(runs) > len(set(runs))
%o A351205 print([k for k in range(130) if ok(k)]) # _Michael S. Branicky_, Feb 09 2022
%Y A351205 Runs in binary expansion are counted by A005811, distinct A297770.
%Y A351205 The complement is A175413, for run-lengths A044813.
%Y A351205 The version for standard compositions is A351291, complement A351290.
%Y A351205 A000120 counts binary weight.
%Y A351205 A011782 counts integer compositions.
%Y A351205 A242882 counts compositions with distinct multiplicities.
%Y A351205 A318928 gives runs-resistance of binary expansion.
%Y A351205 A325545 counts compositions with distinct differences.
%Y A351205 A333489 ranks anti-runs, complement A348612, counted by A003242.
%Y A351205 A334028 counts distinct parts in standard compositions.
%Y A351205 A351014 counts distinct runs in standard compositions.
%Y A351205 Counting words with all distinct runs:
%Y A351205 - A351013 = compositions, for run-lengths A329739.
%Y A351205 - A351016 = binary words, for run-lengths A351017.
%Y A351205 - A351018 = binary expansions, for run-lengths A032020.
%Y A351205 - A351200 = patterns, for run-lengths A351292.
%Y A351205 - A351202 = permutations of prime factors.
%Y A351205 Cf. A070939, A085207, A098859, A233564, A238130 or A238279, A283353, A328592, A350952, A351015, A351203.
%K A351205 nonn,base
%O A351205 1,1
%A A351205 _Gus Wiseman_, Feb 07 2022