cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351211 Decimal expansion of the 14th root of 3.

This page as a plain text file.
%I A351211 #12 Feb 11 2025 14:28:56
%S A351211 1,0,8,1,6,3,3,4,0,0,3,5,2,7,6,5,9,5,8,5,6,7,1,6,8,8,3,1,8,7,4,9,7,7,
%T A351211 7,8,3,9,3,7,4,6,3,8,2,2,8,6,8,1,1,5,2,5,9,0,1,5,7,8,2,5,2,0,2,8,8,8,
%U A351211 4,1,6,2,5,3,6,3,2,1,7,5,1,8,5,1,9,8,9,0,6,1,5,7,2,9,6,6,3,0,7,3,9,7,8,8,4,3,8,9,7,8
%N A351211 Decimal expansion of the 14th root of 3.
%H A351211 <a href="/index/Al#algebraic_14">Index entries for algebraic numbers, degree 14</a>.
%F A351211 Equals 3^(1/14).
%e A351211 1.0816334003527659585671688318749777839374638...
%p A351211 Digits:=100: evalf(3^(1/14));
%t A351211 RealDigits[3^(1/14), 10, 108][[1]]
%o A351211 (PARI) sqrtn(3,14)
%o A351211 (Python)
%o A351211 from sympy import integer_nthroot
%o A351211 def A351211(n): return integer_nthroot(3*10**(14*(n-1)),14)[0] % 10 # _Chai Wah Wu_, Mar 07 2022
%Y A351211 Cf. A246711 (10th root), A351208 (11th root), A351209 (12th root), A351209 (13th root).
%K A351211 cons,nonn
%O A351211 1,3
%A A351211 _Mark Andreas_, Feb 07 2022