cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351221 Least positive integer m such that m^6*n = x^6 + y^3 + z^2 for some nonnegative integers x,y,z.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 38, 1, 1, 1, 1, 1, 1, 18, 3, 1, 1, 1, 2, 8, 30, 14, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 3, 8, 3, 3, 1, 1, 1, 2, 2, 13, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 2, 9, 2, 2, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 1, 11, 9, 2, 3, 1, 1, 1, 1, 1, 3, 3, 1, 26, 1, 2, 2, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 05 2022

Keywords

Comments

6-3-2 Conjecture: a(n) exists for any nonnegative integer n. Equivalently, each nonnegative rational number can be written as x^6 + y^3 + z^2 with x,y,z nonnegative rational numbers.

Examples

			a(6) = 1 with 1^6*6 = 1^6 + 1^3 + 2^2.
a(7) = 38 with 38^6*7 = 42^6 + 1935^3 + 91337^2.
a(21) = 30 with 30^6*21 = 26^6 + 2399^3 + 34545^2.
a(22) = 14 with 14^6*22 = 0^6 + 447^3 + 8737^2.
a(96) = 26 with 26^6*96 = 21^6 + 2711^3 + 98212^2.
a(1120) = 38 with 38^6*1120 = 69^6 + 11499^3 + 1320550^2.
a(2091) = 58 with 58^6*2091 = 161^6 + 39043^3 + 1633994^2.
a(3855) = 51 with 51^6*3855 = 34^6 + 40775^3 + 199008^2.
a(3991) = 45 with 45^6*3991 = 74^6 + 3715^3 + 5738018^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[m=1;Label[bb];k=m^6;Do[If[SQ[k*n-x^6-y^3],tab=Append[tab,m];Goto[aa]],{x,0,(k*n)^(1/6)},{y,0,(k*n-x^6)^(1/3)}];
    m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]