A351221 Least positive integer m such that m^6*n = x^6 + y^3 + z^2 for some nonnegative integers x,y,z.
1, 1, 1, 1, 1, 1, 1, 38, 1, 1, 1, 1, 1, 1, 18, 3, 1, 1, 1, 2, 8, 30, 14, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 3, 8, 3, 3, 1, 1, 1, 2, 2, 13, 1, 1, 1, 1, 1, 2, 2, 4, 1, 1, 2, 9, 2, 2, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 1, 11, 9, 2, 3, 1, 1, 1, 1, 1, 3, 3, 1, 26, 1, 2, 2, 1
Offset: 0
Keywords
Examples
a(6) = 1 with 1^6*6 = 1^6 + 1^3 + 2^2. a(7) = 38 with 38^6*7 = 42^6 + 1935^3 + 91337^2. a(21) = 30 with 30^6*21 = 26^6 + 2399^3 + 34545^2. a(22) = 14 with 14^6*22 = 0^6 + 447^3 + 8737^2. a(96) = 26 with 26^6*96 = 21^6 + 2711^3 + 98212^2. a(1120) = 38 with 38^6*1120 = 69^6 + 11499^3 + 1320550^2. a(2091) = 58 with 58^6*2091 = 161^6 + 39043^3 + 1633994^2. a(3855) = 51 with 51^6*3855 = 34^6 + 40775^3 + 199008^2. a(3991) = 45 with 45^6*3991 = 74^6 + 3715^3 + 5738018^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..4000
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no. 2, 97-120.
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[m=1;Label[bb];k=m^6;Do[If[SQ[k*n-x^6-y^3],tab=Append[tab,m];Goto[aa]],{x,0,(k*n)^(1/6)},{y,0,(k*n-x^6)^(1/3)}]; m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]
Comments