cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351222 Decimal expansion of Sum_{k>=0} (-1)^k/Fibonacci(4*k+2).

This page as a plain text file.
%I A351222 #8 Jan 05 2025 19:51:42
%S A351222 8,9,0,8,6,7,0,2,1,9,7,2,1,1,8,2,6,0,0,4,8,8,5,1,5,2,9,2,4,1,5,6,8,0,
%T A351222 2,0,4,3,0,5,1,2,8,4,4,1,5,8,2,0,4,3,4,5,6,6,2,0,8,0,2,7,1,9,7,5,5,2,
%U A351222 1,5,5,6,7,2,2,1,9,9,7,5,7,6,0,5,3,1,7,8,8,3,4,9,1,6,6,2,6,7,9,5,8,5,9,2,6
%N A351222 Decimal expansion of Sum_{k>=0} (-1)^k/Fibonacci(4*k+2).
%H A351222 Wray G. Brady, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/13-4/elementary13-4.pdf">Problem B-319</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 13, No. 4 (1975), p. 373; <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-5/elementary14-5.pdf">Rerun</a>, Solution to Problem B-319, ibid., Vol. 14, No. 5 (1976), p. 472.
%H A351222 L. Carlitz, <a href="https://fq.math.ca/Scanned/5-1/elementary5-1.pdf">Problem B-111</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 5, No. 1 (1967), p. 108; <a href="https://fq.math.ca/Scanned/5-5/elementary5-5.pdf">Another Series Equality</a>, Solution to Problem B-110 by the proposer, ibid., Vol. 5, No. 5 (1967), pp. 470-471.
%F A351222 Equals sqrt(5) * Sum_{k>=0} 1/Lucas(4*k+2) (Carlitz, 1967).
%e A351222 0.89086702197211826004885152924156802043051284415820...
%t A351222 RealDigits[NSum[(-1)^n/Fibonacci[4*n + 2], {n, 0, Infinity}, WorkingPrecision -> 1200], 10, 100][[1]]
%o A351222 (PARI) sumpos(k=0, (-1)^k/fibonacci(4*k+2)) \\ _Michel Marcus_, Feb 05 2022
%Y A351222 Cf. A000032, A000045, A033890, A246453.
%K A351222 nonn,cons
%O A351222 0,1
%A A351222 _Amiram Eldar_, Feb 05 2022