cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351224 Length of record run of consecutive numbers having the same Collatz trajectory length.

This page as a plain text file.
%I A351224 #8 Mar 09 2022 00:40:35
%S A351224 1,2,3,5,6,7,8,9,14,17,25,27,29,30,40,41,47,52,54,60,65,77,89,96,98,
%T A351224 120,127,130,136,152,174,176
%N A351224 Length of record run of consecutive numbers having the same Collatz trajectory length.
%C A351224 It appears that this sequence is infinite.
%C A351224 For every record number of consecutive identical terms in A006577, the run length is a term of this sequence.
%C A351224 This sequence is interesting because when A006577 is graphed on a scatter plot, it is immediately obvious that there are many runs of terms having the same value.
%C A351224 This sequence is related to A351104 where instead it returns the run length of the records.
%e A351224 a(10)=17 since the 10th record run of identical consecutive trajectory lengths has a run length of 17.
%e A351224 Used from A351104 by _Jon E. Schoenfield_.
%e A351224       trajectory  numbers in run   run
%e A351224    n    length    (1st is a(n))   length
%e A351224   --  ----------  --------------  ------
%e A351224    1        1        1               1
%e A351224    2        9       12, 13           2
%e A351224    3       18       28, 29, 30       3
%e A351224    4       25       98 ...  102      5
%e A351224    5      120      386 ...  391      6
%e A351224    6       36      943 ...  949      7
%e A351224    7       47     1494 ... 1501      8
%e A351224    8       42     1680 ... 1688      9
%e A351224    9       48     2987 ... 3000     14
%e A351224   10       57     7083 ... 7099     17
%o A351224 (Python)
%o A351224 import numpy as np
%o A351224 def find_records(m):
%o A351224     l=np.array([0]+[-1 for i in range(m-1)])
%o A351224     for n in range(len(l)):
%o A351224         path=[n+1]
%o A351224         while path[-1]>m or l[path[-1]-1]==-1:
%o A351224             if path[-1]%2==0:
%o A351224                 path.append(path[-1]//2)
%o A351224             else:
%o A351224                 path.append(path[-1]*3+1)
%o A351224         path.reverse()
%o A351224         for i in range(1,len(path)):
%o A351224             if path[i]<=m:
%o A351224                 l[path[i]-1]=l[path[0]-1]+i
%o A351224     seq=[]
%o A351224     c,lsteps,record=1,0,0
%o A351224     for n in range(1,len(l)):
%o A351224         if l[n]==lsteps:
%o A351224             c+=1
%o A351224         else:
%o A351224             if c>record:
%o A351224                 record=c
%o A351224                 seq.append(c)
%o A351224             c=1
%o A351224         lsteps=l[n]
%o A351224     return seq
%o A351224 print(", ".join([str(i) for i in find_records(1000000)]))
%Y A351224 For first term of run see A351104.
%K A351224 nonn,more
%O A351224 1,2
%A A351224 _Nathan John Eaves_, Feb 04 2022