A351238 Numbers M such that 87 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.
13, 12987013, 12987012987013, 12987012987012987013, 12987012987012987012987013, 12987012987012987012987012987013, 12987012987012987012987012987012987013, 12987012987012987012987012987012987012987013, 12987012987012987012987012987012987012987012987013, 12987012987012987012987012987012987012987012987012987013
Offset: 1
Examples
87 * 13 = 1[13]1, hence 13 is a term. 87 * 12987013 = 1[12987013]1, and 12987013 is a term.
References
- D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.
Links
- Index entries for linear recurrences with constant coefficients, signature (1000001,-1000000).
Crossrefs
Programs
-
Maple
seq((10^(6*n-3)+1)/77, n=1..15);
-
Mathematica
Table[(10^(6*n - 3) + 1)/77, {n, 1, 10}] (* Amiram Eldar, Feb 06 2022 *)
Formula
a(n) = (10^(6*n-3)+1)/77 for n >= 1.
Comments