cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351243 Counterexamples to a conjecture of Selfridge and Lacampagne.

Original entry on oeis.org

247, 277, 967, 977, 1211, 1219, 1895, 1937, 1951, 1961, 2183, 2191, 2911, 2921, 3029, 3641, 3649
Offset: 1

Views

Author

Jeffrey Shallit, Feb 05 2022

Keywords

Comments

The conjecture was that every natural number k not divisible by 3 can be written as the quotient of two terms chosen from A147991.
For every specific k, the problem of representing k as the quotient of two terms of A147991 can be decided by using a queue-based breadth-first search algorithm on the transition diagram of a finite automaton that on input j in base 3 computes j*k and checks to see if both j and j*k are in A147991.
It is not known if there are infinitely many counterexamples to the conjecture, but perhaps 3^m+4, for m >= 5 and odd, are.

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 2004. In Section F31, the conjecture of Selfridge and Lacampagne is mentioned, and it is stated that Don Coppersmith found the counterexample 247.

Crossrefs

Cf. A147991.