cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351265 Sum of the squares of the squarefree divisors of n.

This page as a plain text file.
%I A351265 #37 Dec 26 2024 12:00:32
%S A351265 1,5,10,5,26,50,50,5,10,130,122,50,170,250,260,5,290,50,362,130,500,
%T A351265 610,530,50,26,850,10,250,842,1300,962,5,1220,1450,1300,50,1370,1810,
%U A351265 1700,130,1682,2500,1850,610,260,2650,2210,50,50,130,2900,850,2810,50,3172,250,3620
%N A351265 Sum of the squares of the squarefree divisors of n.
%C A351265 Inverse Möbius transform of n^2 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351265 Seiichi Manyama, <a href="/A351265/b351265.txt">Table of n, a(n) for n = 1..10000</a>
%H A351265 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351265 a(n) = Sum_{d|n} d^2 * mu(d)^2.
%F A351265 a(n) = abs(A328639(n)).
%F A351265 G.f.: Sum_{k>=1} mu(k)^2 * k^2 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351265 Multiplicative with a(p^e) = 1 + p^2. - _Amiram Eldar_, Feb 06 2022
%F A351265 Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(3*zeta(2)) = A253905 / 3 = 0.243587... . - _Amiram Eldar_, Nov 10 2022
%F A351265 Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s-4). - _Michael Shamos_, Aug 05 2023
%e A351265 a(6) = 50; a(6) = Sum_{d|6} d^2 * mu(d)^2 = 1^2*1 + 2^2*1 + 3^2*1 + 6^2*1 = 50.
%t A351265 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^2); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%t A351265 Table[Total[Select[Divisors[n],SquareFreeQ]^2],{n,80}] (* _Harvey P. Dale_, Dec 26 2024 *)
%o A351265 (PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d^2)); \\ _Michel Marcus_, Feb 06 2022
%Y A351265 Cf. A008683 (mu), A253905, A328639, A322360.
%Y A351265 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), this sequence (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
%K A351265 nonn,mult
%O A351265 1,2
%A A351265 _Wesley Ivan Hurt_, Feb 05 2022