cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351266 Sum of the cubes of the squarefree divisors of n.

This page as a plain text file.
%I A351266 #34 Feb 09 2025 01:11:29
%S A351266 1,9,28,9,126,252,344,9,28,1134,1332,252,2198,3096,3528,9,4914,252,
%T A351266 6860,1134,9632,11988,12168,252,126,19782,28,3096,24390,31752,29792,9,
%U A351266 37296,44226,43344,252,50654,61740,61544,1134,68922,86688,79508,11988,3528,109512,103824
%N A351266 Sum of the cubes of the squarefree divisors of n.
%C A351266 Inverse Möbius transform of n^3 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351266 Seiichi Manyama, <a href="/A351266/b351266.txt">Table of n, a(n) for n = 1..10000</a>
%H A351266 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351266 a(n) = Sum_{d|n} d^3 * mu(d)^2.
%F A351266 a(n) = abs(A328640(n)).
%F A351266 G.f.: Sum_{k>=1} mu(k)^2 * k^3 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351266 Multiplicative with a(p^e) = 1 + p^3. - _Amiram Eldar_, Feb 06 2022
%F A351266 Sum_{k=1..n} a(k) ~ c * n^4, where c = zeta(4)/(4*zeta(2)) = Pi^2/60 = 0.164493... . - _Amiram Eldar_, Nov 10 2022
%F A351266 Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2s-6). - _Michael Shamos_, Feb 09 2025
%e A351266 a(4) = 9; a(4) = Sum_{d|4} d^3 * mu(d)^2 = 1^3*1 + 2^3*1 + 4^3*0 = 9.
%t A351266 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^3); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%o A351266 (PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d^3)); \\ _Michel Marcus_, Feb 06 2022
%Y A351266 Cf. A008683 (mu), A013661, A013662, A328640.
%Y A351266 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), this sequence (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
%K A351266 nonn,mult
%O A351266 1,2
%A A351266 _Wesley Ivan Hurt_, Feb 05 2022