cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351267 Sum of the 4th powers of the squarefree divisors of n.

This page as a plain text file.
%I A351267 #27 Jun 08 2023 00:23:44
%S A351267 1,17,82,17,626,1394,2402,17,82,10642,14642,1394,28562,40834,51332,17,
%T A351267 83522,1394,130322,10642,196964,248914,279842,1394,626,485554,82,
%U A351267 40834,707282,872644,923522,17,1200644,1419874,1503652,1394,1874162,2215474,2342084,10642,2825762,3348388
%N A351267 Sum of the 4th powers of the squarefree divisors of n.
%C A351267 Inverse Möbius transform of n^4 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351267 Seiichi Manyama, <a href="/A351267/b351267.txt">Table of n, a(n) for n = 1..10000</a>
%H A351267 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351267 a(n) = Sum_{d|n} d^4 * mu(d)^2.
%F A351267 G.f.: Sum_{k>=1} mu(k)^2 * k^4 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351267 Multiplicative with a(p^e) = 1 + p^4. - _Amiram Eldar_, Feb 06 2022
%F A351267 Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - _Amiram Eldar_, Nov 10 2022
%e A351267 a(4) = 17; a(4) = Sum_{d|4} d^4 * mu(d)^2 = 1^4*1 + 2^4*1 + 4^4*0 = 17.
%t A351267 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^4); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%o A351267 (PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d^4)); \\ _Michel Marcus_, Feb 06 2022
%Y A351267 Cf. A008683 (mu), A013661, A013663.
%Y A351267 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), this sequence (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
%K A351267 nonn,mult
%O A351267 1,2
%A A351267 _Wesley Ivan Hurt_, Feb 05 2022