cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351268 Sum of the 5th powers of the squarefree divisors of n.

This page as a plain text file.
%I A351268 #22 Jun 08 2023 00:24:09
%S A351268 1,33,244,33,3126,8052,16808,33,244,103158,161052,8052,371294,554664,
%T A351268 762744,33,1419858,8052,2476100,103158,4101152,5314716,6436344,8052,
%U A351268 3126,12252702,244,554664,20511150,25170552,28629152,33,39296688,46855314,52541808,8052,69343958
%N A351268 Sum of the 5th powers of the squarefree divisors of n.
%C A351268 Inverse Möbius transform of n^5 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351268 Seiichi Manyama, <a href="/A351268/b351268.txt">Table of n, a(n) for n = 1..10000</a>
%H A351268 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351268 a(n) = Sum_{d|n} d^5 * mu(d)^2.
%F A351268 Multiplicative with a(p^e) = 1 + p^5. - _Amiram Eldar_, Feb 06 2022
%F A351268 G.f.: Sum_{k>=1} mu(k)^2 * k^5 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351268 Sum_{k=1..n} a(k) ~ c * n^6, where c = zeta(6)/(6*zeta(2)) = Pi^4/945 = 0.103078... . - _Amiram Eldar_, Nov 10 2022
%e A351268 a(4) = 33; a(4) = Sum_{d|4} d^5 * mu(d)^2 = 1^5*1 + 2^5*1 + 4^4*0 = 33.
%t A351268 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^5); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%Y A351268 Cf. A008683 (mu), A013661, A013664.
%Y A351268 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), this sequence (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
%K A351268 nonn,mult
%O A351268 1,2
%A A351268 _Wesley Ivan Hurt_, Feb 05 2022