This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351268 #22 Jun 08 2023 00:24:09 %S A351268 1,33,244,33,3126,8052,16808,33,244,103158,161052,8052,371294,554664, %T A351268 762744,33,1419858,8052,2476100,103158,4101152,5314716,6436344,8052, %U A351268 3126,12252702,244,554664,20511150,25170552,28629152,33,39296688,46855314,52541808,8052,69343958 %N A351268 Sum of the 5th powers of the squarefree divisors of n. %C A351268 Inverse Möbius transform of n^5 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023 %H A351268 Seiichi Manyama, <a href="/A351268/b351268.txt">Table of n, a(n) for n = 1..10000</a> %H A351268 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %F A351268 a(n) = Sum_{d|n} d^5 * mu(d)^2. %F A351268 Multiplicative with a(p^e) = 1 + p^5. - _Amiram Eldar_, Feb 06 2022 %F A351268 G.f.: Sum_{k>=1} mu(k)^2 * k^5 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022 %F A351268 Sum_{k=1..n} a(k) ~ c * n^6, where c = zeta(6)/(6*zeta(2)) = Pi^4/945 = 0.103078... . - _Amiram Eldar_, Nov 10 2022 %e A351268 a(4) = 33; a(4) = Sum_{d|4} d^5 * mu(d)^2 = 1^5*1 + 2^5*1 + 4^4*0 = 33. %t A351268 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^5); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *) %Y A351268 Cf. A008683 (mu), A013661, A013664. %Y A351268 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), this sequence (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10). %K A351268 nonn,mult %O A351268 1,2 %A A351268 _Wesley Ivan Hurt_, Feb 05 2022