This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351269 #22 Jun 08 2023 00:24:32 %S A351269 1,65,730,65,15626,47450,117650,65,730,1015690,1771562,47450,4826810, %T A351269 7647250,11406980,65,24137570,47450,47045882,1015690,85884500, %U A351269 115151530,148035890,47450,15626,313742650,730,7647250,594823322,741453700,887503682,65,1293240260 %N A351269 Sum of the 6th powers of the squarefree divisors of n. %C A351269 Inverse Möbius transform of n^6 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023 %H A351269 Seiichi Manyama, <a href="/A351269/b351269.txt">Table of n, a(n) for n = 1..10000</a> %H A351269 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %F A351269 a(n) = Sum_{d|n} d^6 * mu(d)^2. %F A351269 Multiplicative with a(p^e) = 1 + p^6. - _Amiram Eldar_, Feb 06 2022 %F A351269 G.f.: Sum_{k>=1} mu(k)^2 * k^6 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022 %F A351269 Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/(7*zeta(2)) = 0.0875718... . - _Amiram Eldar_, Nov 10 2022 %e A351269 a(4) = 65; a(4) = Sum_{d|4} d^6 * mu(d)^2 = 1^6*1 + 2^6*1 + 4^6*0 = 65. %t A351269 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^6); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *) %Y A351269 Cf. A008683 (mu), A013661, A013665. %Y A351269 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), this sequence (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10). %K A351269 nonn,mult %O A351269 1,2 %A A351269 _Wesley Ivan Hurt_, Feb 05 2022