This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351270 #22 Jun 08 2023 00:25:11 %S A351270 1,129,2188,129,78126,282252,823544,129,2188,10078254,19487172,282252, %T A351270 62748518,106237176,170939688,129,410338674,282252,893871740,10078254, %U A351270 1801914272,2513845188,3404825448,282252,78126,8094558822,2188,106237176,17249876310,22051219752,27512614112 %N A351270 Sum of the 7th powers of the squarefree divisors of n. %C A351270 Inverse Möbius transform of n^7 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023 %H A351270 Seiichi Manyama, <a href="/A351270/b351270.txt">Table of n, a(n) for n = 1..10000</a> %H A351270 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %F A351270 a(n) = Sum_{d|n} d^7 * mu(d)^2. %F A351270 Multiplicative with a(p^e) = 1 + p^7. - _Amiram Eldar_, Feb 06 2022 %F A351270 G.f.: Sum_{k>=1} mu(k)^2 * k^7 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022 %F A351270 Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/(8*zeta(2)) = Pi^6/12600 = 0.0763007... . - _Amiram Eldar_, Nov 10 2022 %e A351270 a(4) = 129; a(4) = Sum_{d|4} d^7 * mu(d)^2 = 1^7*1 + 2^7*1 + 4^7*0 = 129. %t A351270 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^7); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *) %Y A351270 Cf. A008683 (mu), A013661, A013666. %Y A351270 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), this sequence (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10). %K A351270 nonn,mult %O A351270 1,2 %A A351270 _Wesley Ivan Hurt_, Feb 05 2022