cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351270 Sum of the 7th powers of the squarefree divisors of n.

This page as a plain text file.
%I A351270 #22 Jun 08 2023 00:25:11
%S A351270 1,129,2188,129,78126,282252,823544,129,2188,10078254,19487172,282252,
%T A351270 62748518,106237176,170939688,129,410338674,282252,893871740,10078254,
%U A351270 1801914272,2513845188,3404825448,282252,78126,8094558822,2188,106237176,17249876310,22051219752,27512614112
%N A351270 Sum of the 7th powers of the squarefree divisors of n.
%C A351270 Inverse Möbius transform of n^7 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351270 Seiichi Manyama, <a href="/A351270/b351270.txt">Table of n, a(n) for n = 1..10000</a>
%H A351270 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351270 a(n) = Sum_{d|n} d^7 * mu(d)^2.
%F A351270 Multiplicative with a(p^e) = 1 + p^7. - _Amiram Eldar_, Feb 06 2022
%F A351270 G.f.: Sum_{k>=1} mu(k)^2 * k^7 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351270 Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/(8*zeta(2)) = Pi^6/12600 = 0.0763007... . - _Amiram Eldar_, Nov 10 2022
%e A351270 a(4) = 129; a(4) = Sum_{d|4} d^7 * mu(d)^2 = 1^7*1 + 2^7*1 + 4^7*0 = 129.
%t A351270 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^7); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%Y A351270 Cf. A008683 (mu), A013661, A013666.
%Y A351270 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), this sequence (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
%K A351270 nonn,mult
%O A351270 1,2
%A A351270 _Wesley Ivan Hurt_, Feb 05 2022