cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351271 Sum of the 8th powers of the squarefree divisors of n.

This page as a plain text file.
%I A351271 #22 Jun 08 2023 00:25:29
%S A351271 1,257,6562,257,390626,1686434,5764802,257,6562,100390882,214358882,
%T A351271 1686434,815730722,1481554114,2563287812,257,6975757442,1686434,
%U A351271 16983563042,100390882,37828630724,55090232674,78310985282,1686434,390626,209642795554,6562,1481554114,500246412962
%N A351271 Sum of the 8th powers of the squarefree divisors of n.
%C A351271 Inverse Möbius transform of n^8 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351271 Seiichi Manyama, <a href="/A351271/b351271.txt">Table of n, a(n) for n = 1..10000</a>
%H A351271 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351271 a(n) = Sum_{d|n} d^8 * mu(d)^2.
%F A351271 Multiplicative with a(p^e) = 1 + p^8. - _Amiram Eldar_, Feb 06 2022
%F A351271 G.f.: Sum_{k>=1} mu(k)^2 * k^8 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351271 Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/(9*zeta(2)) = 0.0676831... . - _Amiram Eldar_, Nov 10 2022
%e A351271 a(4) = 257; a(4) = Sum_{d|4} d^8 * mu(d)^2 = 1^8*1 + 2^8*1 + 4^8*0 = 257.
%t A351271 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^8); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%Y A351271 Cf. A008683 (mu), A013661, A013667.
%Y A351271 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), this sequence (k=8), A351272 (k=9), A351273 (k=10).
%K A351271 nonn,mult
%O A351271 1,2
%A A351271 _Wesley Ivan Hurt_, Feb 05 2022