cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351272 Sum of the 9th powers of the squarefree divisors of n.

This page as a plain text file.
%I A351272 #26 Jun 08 2023 00:25:45
%S A351272 1,513,19684,513,1953126,10097892,40353608,513,19684,1001953638,
%T A351272 2357947692,10097892,10604499374,20701400904,38445332184,513,
%U A351272 118587876498,10097892,322687697780,1001953638,794320419872,1209627165996,1801152661464,10097892,1953126,5440108178862
%N A351272 Sum of the 9th powers of the squarefree divisors of n.
%C A351272 Inverse Möbius transform of n^9 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351272 Seiichi Manyama, <a href="/A351272/b351272.txt">Table of n, a(n) for n = 1..10000</a>
%H A351272 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351272 a(n) = Sum_{d|n} d^9 * mu(d)^2.
%F A351272 Multiplicative with a(p^e) = 1 + p^9. - _Amiram Eldar_, Feb 06 2022
%F A351272 G.f.: Sum_{k>=1} mu(k)^2 * k^9 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351272 Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/(10*zeta(2)) = Pi^8/155925 = 0.0608531... . - _Amiram Eldar_, Nov 10 2022
%e A351272 a(4) = 513; a(4) = Sum_{d|4} d^9 * mu(d)^2 = 1^9*1 + 2^9*1 + 4^9*0 = 513.
%t A351272 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^9); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%t A351272 Table[Total[Select[Divisors[n],SquareFreeQ]^9],{n,30}] (* _Harvey P. Dale_, Feb 21 2023 *)
%Y A351272 Cf. A008683 (mu), A013661, A013668.
%Y A351272 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), this sequence (k=9), A351273 (k=10).
%K A351272 nonn,mult
%O A351272 1,2
%A A351272 _Wesley Ivan Hurt_, Feb 05 2022