This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351272 #26 Jun 08 2023 00:25:45 %S A351272 1,513,19684,513,1953126,10097892,40353608,513,19684,1001953638, %T A351272 2357947692,10097892,10604499374,20701400904,38445332184,513, %U A351272 118587876498,10097892,322687697780,1001953638,794320419872,1209627165996,1801152661464,10097892,1953126,5440108178862 %N A351272 Sum of the 9th powers of the squarefree divisors of n. %C A351272 Inverse Möbius transform of n^9 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023 %H A351272 Seiichi Manyama, <a href="/A351272/b351272.txt">Table of n, a(n) for n = 1..10000</a> %H A351272 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %F A351272 a(n) = Sum_{d|n} d^9 * mu(d)^2. %F A351272 Multiplicative with a(p^e) = 1 + p^9. - _Amiram Eldar_, Feb 06 2022 %F A351272 G.f.: Sum_{k>=1} mu(k)^2 * k^9 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022 %F A351272 Sum_{k=1..n} a(k) ~ c * n^10, where c = zeta(10)/(10*zeta(2)) = Pi^8/155925 = 0.0608531... . - _Amiram Eldar_, Nov 10 2022 %e A351272 a(4) = 513; a(4) = Sum_{d|4} d^9 * mu(d)^2 = 1^9*1 + 2^9*1 + 4^9*0 = 513. %t A351272 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^9); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *) %t A351272 Table[Total[Select[Divisors[n],SquareFreeQ]^9],{n,30}] (* _Harvey P. Dale_, Feb 21 2023 *) %Y A351272 Cf. A008683 (mu), A013661, A013668. %Y A351272 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), this sequence (k=9), A351273 (k=10). %K A351272 nonn,mult %O A351272 1,2 %A A351272 _Wesley Ivan Hurt_, Feb 05 2022