This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351273 #27 Jun 08 2023 00:26:14 %S A351273 1,1025,59050,1025,9765626,60526250,282475250,1025,59050,10009766650, %T A351273 25937424602,60526250,137858491850,289537131250,576660215300,1025, %U A351273 2015993900450,60526250,6131066257802,10009766650,16680163512500,26585860217050,41426511213650,60526250 %N A351273 Sum of the 10th powers of the squarefree divisors of n. %C A351273 Inverse Möbius transform of n^10 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023 %H A351273 Seiichi Manyama, <a href="/A351273/b351273.txt">Table of n, a(n) for n = 1..10000</a> %H A351273 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %F A351273 a(n) = Sum_{d|n} d^10 * mu(d)^2. %F A351273 Multiplicative with a(p^e) = 1 + p^10. - _Amiram Eldar_, Feb 06 2022 %F A351273 G.f.: Sum_{k>=1} mu(k)^2 * k^10 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022 %F A351273 Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/(11*zeta(2)) = 0.0552934... . - _Amiram Eldar_, Nov 10 2022 %e A351273 a(4) = 1025; a(4) = Sum_{d|4} d^10 * mu(d)^2 = 1^10*1 + 2^10*1 + 4^10*0 = 1025. %t A351273 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^10); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *) %t A351273 Table[Total[Select[Divisors[n],SquareFreeQ]^10],{n,25}] (* _Harvey P. Dale_, Nov 20 2022 *) %Y A351273 Cf. A008683 (mu), A013661, A013669. %Y A351273 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), this sequence (k=10). %K A351273 nonn,mult %O A351273 1,2 %A A351273 _Wesley Ivan Hurt_, Feb 05 2022