cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351273 Sum of the 10th powers of the squarefree divisors of n.

This page as a plain text file.
%I A351273 #27 Jun 08 2023 00:26:14
%S A351273 1,1025,59050,1025,9765626,60526250,282475250,1025,59050,10009766650,
%T A351273 25937424602,60526250,137858491850,289537131250,576660215300,1025,
%U A351273 2015993900450,60526250,6131066257802,10009766650,16680163512500,26585860217050,41426511213650,60526250
%N A351273 Sum of the 10th powers of the squarefree divisors of n.
%C A351273 Inverse Möbius transform of n^10 * mu(n)^2. - _Wesley Ivan Hurt_, Jun 08 2023
%H A351273 Seiichi Manyama, <a href="/A351273/b351273.txt">Table of n, a(n) for n = 1..10000</a>
%H A351273 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%F A351273 a(n) = Sum_{d|n} d^10 * mu(d)^2.
%F A351273 Multiplicative with a(p^e) = 1 + p^10. - _Amiram Eldar_, Feb 06 2022
%F A351273 G.f.: Sum_{k>=1} mu(k)^2 * k^10 * x^k / (1 - x^k). - _Ilya Gutkovskiy_, Feb 06 2022
%F A351273 Sum_{k=1..n} a(k) ~ c * n^11, where c = zeta(11)/(11*zeta(2)) = 0.0552934... . - _Amiram Eldar_, Nov 10 2022
%e A351273 a(4) = 1025; a(4) = Sum_{d|4} d^10 * mu(d)^2 = 1^10*1 + 2^10*1 + 4^10*0 = 1025.
%t A351273 a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^10); Array[a, 100] (* _Amiram Eldar_, Feb 06 2022 *)
%t A351273 Table[Total[Select[Divisors[n],SquareFreeQ]^10],{n,25}] (* _Harvey P. Dale_, Nov 20 2022 *)
%Y A351273 Cf. A008683 (mu), A013661, A013669.
%Y A351273 Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), this sequence (k=10).
%K A351273 nonn,mult
%O A351273 1,2
%A A351273 _Wesley Ivan Hurt_, Feb 05 2022