This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351293 #19 Aug 13 2025 22:18:06 %S A351293 0,0,0,1,1,2,4,5,9,14,21,28,44,56,80,111,148,192,264,335,447,575,743, %T A351293 937,1213,1513,1924,2396,3011,3715,4646,5687,7040,8600,10556,12804, %U A351293 15650,18897,22930,27593,33296,39884,47921,57168,68360,81295,96807,114685 %N A351293 Number of non-Look-and-Say partitions of n. Number of integer partitions of n such that there is no way to choose a disjoint strict integer partition of each multiplicity. %C A351293 First differs from A336866 (non-Wilf partitions) at a(9) = 14, A336866(9) = 15, the difference being the partition (2,2,2,1,1,1). %C A351293 See A239455 for the definition of Look-and-Say partitions. %F A351293 a(n) = A000041(n) - A239455(n). %e A351293 The a(3) = 1 through a(9) = 14 partitions: %e A351293 (21) (31) (32) (42) (43) (53) (54) %e A351293 (41) (51) (52) (62) (63) %e A351293 (321) (61) (71) (72) %e A351293 (2211) (421) (431) (81) %e A351293 (3211) (521) (432) %e A351293 (3221) (531) %e A351293 (3311) (621) %e A351293 (4211) (3321) %e A351293 (32111) (4221) %e A351293 (4311) %e A351293 (5211) %e A351293 (32211) %e A351293 (42111) %e A351293 (321111) %t A351293 disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&]; %t A351293 Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]==0&]],{n,0,15}] (* _Gus Wiseman_, Aug 13 2025 *) %Y A351293 The complement is counted by A239455, ranked by A351294. %Y A351293 These are all non-Wilf partitions (counted by A336866, ranked by A130092). %Y A351293 A variant for runs is A351203, complement A351204, ranked by A351201. %Y A351293 These partitions appear to be ranked by A351295. %Y A351293 Non-Wilf partitions in the complement are counted by A351592. %Y A351293 A000569 = graphical partitions, complement A339617. %Y A351293 A032020 = number of binary expansions with all distinct run-lengths. %Y A351293 A044813 = numbers whose binary expansion has all distinct run-lengths. %Y A351293 A098859 = Wilf partitions (distinct multiplicities), ranked by A130091. %Y A351293 A181819 = Heinz number of the prime signature of n (prime shadow). %Y A351293 A329738 = compositions with all equal run-lengths. %Y A351293 A329739 = compositions with all distinct run-lengths, for all runs A351013. %Y A351293 A351017 = binary words with all distinct run-lengths, for all runs A351016. %Y A351293 A351292 = patterns with all distinct run-lengths, for all runs A351200. %Y A351293 Cf. A000041, A008284, A047966, A182857, A225485, A238130, A297770, A304660, A305563, A329740, A329746, A351202, A351291. %K A351293 nonn %O A351293 0,6 %A A351293 _Gus Wiseman_, Feb 16 2022 %E A351293 Edited by _Gus Wiseman_, Aug 12 2025