A351338 Least nonnegative integer m such that n = x^3 + y^3 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m.
0, 0, 0, 5, 11, 4, 1, 1, 0, 0, 3, 2, 2, 35, 1, 1, 0, 7, 2, 2, 2, 12, 14, 10, 4, 1, 1, 0, 0, 3, 3, 44, 22, 1, 1, 0, 3, 3, 2, 8, 8, 127, 4, 7, 3, 2, 2, 8, 2, 2, 97, 7, 1, 1, 0, 2, 2, 2, 17, 13, 4, 4, 1, 1, 0, 0, 6, 20, 4, 4, 1, 1, 0, 15, 3, 2, 53, 22, 7, 3, 4, 6, 2, 2, 5, 14, 139, 4, 4, 1, 1, 0, 5, 3, 5, 22, 4, 3, 3, 3, 3
Offset: 0
Keywords
Examples
a(41) = 127 with 41 = 41^3 + 128^3 - 49^3 -127^3. a(130) = 143 with 130 = 37^3 + 169^3 - 125^3 - 143^3. a(4756) = 533 with 4756 = 265^3 + 538^3 - 284^3 - 533^3. a(5134) = 389 with 5134 = 19^3 + 418^3 - 242^3 - 389^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
CQ[n_]:=IntegerQ[n^(1/3)]; tab={};Do[m=0; Label[bb]; k=m^3; Do[If[CQ[n+k+x^3-y^3], tab=Append[tab,m];Goto[aa]], {x, 0, m}, {y, 0, ((n+k+x^3)/2)^(1/3)}];m=m+1; Goto[bb]; Label[aa], {n, 0, 100}];Print[tab]
Comments