cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A351338 Least nonnegative integer m such that n = x^3 + y^3 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m.

Original entry on oeis.org

0, 0, 0, 5, 11, 4, 1, 1, 0, 0, 3, 2, 2, 35, 1, 1, 0, 7, 2, 2, 2, 12, 14, 10, 4, 1, 1, 0, 0, 3, 3, 44, 22, 1, 1, 0, 3, 3, 2, 8, 8, 127, 4, 7, 3, 2, 2, 8, 2, 2, 97, 7, 1, 1, 0, 2, 2, 2, 17, 13, 4, 4, 1, 1, 0, 0, 6, 20, 4, 4, 1, 1, 0, 15, 3, 2, 53, 22, 7, 3, 4, 6, 2, 2, 5, 14, 139, 4, 4, 1, 1, 0, 5, 3, 5, 22, 4, 3, 3, 3, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 08 2022

Keywords

Comments

Conjecture: a(n) exists for any n >= 0. Equivalently, each integer can be written as x^3 + y^3 - (z^3 + w^3) with x,y,z,w nonnegative integers.
This is stronger than Sierpinski's conjecture which states that any integer is a sum of four integer cubes.

Examples

			a(41) = 127 with 41 = 41^3 + 128^3 - 49^3 -127^3.
a(130) = 143 with 130 = 37^3 + 169^3 - 125^3 - 143^3.
a(4756) = 533 with 4756 = 265^3 + 538^3 - 284^3 - 533^3.
a(5134) = 389 with 5134 = 19^3 + 418^3 - 242^3 - 389^3.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=IntegerQ[n^(1/3)];
    tab={};Do[m=0; Label[bb]; k=m^3; Do[If[CQ[n+k+x^3-y^3], tab=Append[tab,m];Goto[aa]],  {x, 0, m}, {y, 0, ((n+k+x^3)/2)^(1/3)}];m=m+1; Goto[bb]; Label[aa], {n, 0, 100}];Print[tab]

A351321 Least positive integer m such that m^6*n = u^6 + v^3 - (x^6 + y^3) for some nonnegative integers u,v,x,y with x^6 + y^3 <= m^6*n^2.

Original entry on oeis.org

1, 1, 1, 21, 6, 3, 1, 1, 1, 1, 7, 7, 3, 3, 3, 3, 2, 6, 1, 1, 1, 2, 6, 3, 5, 1, 1, 1, 1, 5, 2, 6, 12, 3, 1, 1, 1, 1, 1, 6, 6, 3, 3, 2, 1, 1, 4, 3, 2, 3, 3, 2, 7, 1, 1, 1, 1, 1, 3, 6, 1, 1, 1, 1, 1, 1, 4, 15, 3, 3, 1, 1, 1, 3, 4, 2, 3, 6, 3, 3, 2, 3, 1, 1, 3, 3, 3, 6, 1, 1, 1, 1, 1, 3, 6, 6, 3, 1, 1, 1, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 07 2022

Keywords

Comments

6-6-3-3 Conjecture: Each rational number can be written as u^6 - v^6 + x^3 - y^3 with u,v,x,y nonnegative rational numbers. Moreover, a(n) exists for any nonnegative integer n.
As a/b = (a*b^5)/b^6 for any integer a and nonzero integer b, the second assertion in the conjecture implies the first one.

Examples

			a(3) = 21 with 21^6*3 = 22^6 + 956^3 - (30^6 + 93^3) and 30^6 + 93^3 <= 21^6*3^2.
a(67) = 15 with 15^6*67 = 21^6 + 1091^3 - (15^6 + 848^3) and 15^6 + 848^3 <= 15^6*67^2.
a(564) = 14 with 14^6*564 = 69^6 + 4415^3 - (16^6 + 5746^3) and 16^6 + 5746^3 <= 14^6*564^2.
a(949) = 18 with 18^6*949 = 7^6 + 11784^3 - (11^6 + 11706^3) and 11^6 + 11706^3 <= 18^6*949^2.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    tab={};Do[m=1;Label[bb];k=m^6;Do[If[CQ[k*n+x^6+y^3-z^6],tab=Append[tab,m];Goto[aa]],
    {x,0,m*n^(1/3)},{y,0,(k*n^2-x^6)^(1/3)},{z,0,(k*n+x^6+y^3)^(1/6)}]; m=m+1;Goto[bb]; Label[aa],{n,0,100}];Print[tab]

A351341 Least nonnegative integer m such that n = x^4 + y^4 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m.

Original entry on oeis.org

0, 0, 0, 63, 3, 3, 4, 2, 2, 2, 4, 21, 37, 6, 1, 1, 0, 0, 4, 11, 7, 14, 5, 2, 2, 4, 8, 3, 3, 5, 1, 1, 0, 4, 4, 45, 5, 5, 11, 6, 6, 6, 32, 3, 7, 11, 3, 3, 6, 8, 8, 48, 13, 3, 3, 3, 6, 6, 31, 20, 93, 55, 3, 49, 33, 2, 2, 5, 5, 3, 3, 4, 2, 2, 2, 69, 17, 29, 11, 1, 1, 0, 0, 5, 61, 29, 8, 5, 2, 2, 4, 21, 29, 51, 6, 1, 1, 0, 4, 85, 13
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 08 2022

Keywords

Comments

Conjecture 1: Let k be 4 or 5. Then each integer can be written as x^k + y^k - (z^3 + w^3) with x,y,z,w nonnegative integers.
Two examples for k = 5: -4 = 58^5 + 76^5 - (775^3 + 1397^3) and 14 = 40^5 + 67^5 - (125^3 + 1132^3).
Conjecture 2: Let k be among 4, 5, 6 and 7. Then any integer can be written as x^k + y^k - (z^2 + w^2) with x,y,z,w nonnegative integers.
Examples for k = 6, 7: 170 = 9^6 + 15^6 - (2114^2 + 2730^2) and 469 = 7^7 + 8^7 - (1001^2 + 1385^2).
Conjecture 3: For any integer k > 3, there are no nonnegative integers x,y,z,w such that x^k + y^k - (z^k + w^k) = 3.
See also another similar conjecture in A351338.

Examples

			a(60) = 93 with 60 = 25^4 + 27^4 - (49^3 + 93^3).
a(527) = 527 with 527 = 29^4 + 110^4 - (91^3 + 527^3).
a(2198) = 1704 with 2198 = 85^4 + 304^4 - (1539^3 + 1704^3).
a(4843) = 1965 with 4843 = 142^4 + 338^4 - (1804^3 + 1965^3).
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=IntegerQ[n^(1/4)];
    tab={};Do[m=0;Label[bb]; k=m^3;Do[If[QQ[n+k+x^3-y^4], tab=Append[tab,m];Goto[aa]],{x,0,m},{y,0,((n+k+x^3)/2)^(1/4)}];m=m+1;Goto[bb];Label[aa],{n, 0, 100}];Print[tab]

A351312 Least positive integer m such that m^4*n = x^4 + y^4 - z^2 for some nonnegative integers x,y,z with z <= m^2*n.

Original entry on oeis.org

1, 1, 1, 2, 20, 2, 2, 1, 1, 24, 6, 2, 1, 1, 15, 1, 1, 1, 1, 20, 2, 2, 2, 1, 5, 2, 2, 4, 1, 17, 1, 1, 1, 1, 2, 2, 2, 2, 6, 2, 1, 1, 2, 2, 13, 1, 1, 1, 1, 1, 1, 4, 2, 2, 10, 2, 1, 1, 2, 10, 1, 1, 1, 2, 10, 1, 1, 2, 2, 20, 6, 1, 1, 1, 12, 6, 1, 1, 1, 4, 1, 1, 1, 2, 6, 2, 2, 1, 1, 5, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 2
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 06 2022

Keywords

Comments

Conjecture: Any integer m can be written as x^4 + y^4 - z^2, where x,y,z are rational numbers with z <= |m|.
This implies the existence of a(n) for all n >= 0. As a/b = (a*b^3)/b^4 for any integer a and nonzero integer b, the conjecture also implies that any rational number can be written as x^4 + y^4 - z^2 with x,y,z rational numbers.

Examples

			a(4) = 20 with 20^4*4 = 15^4 + 28^4 - 159^2 and 159 < 20^2*4.
a(9) = 24 with 24^4*9 = 20^4 + 45^4 - 1129^2 and 1129 < 24^2*9.
a(164) = 30 with 30^4*164 = 66^4 + 185^4 - 32519^2 and 32519 < 30^2*164.
From _Chai Wah Wu_, Feb 21 2022: (Start)
a(244) = 50 with 50^4*244 = 455^4 + 504^4 - 325359^2 and 325359 < 50^2*244.
a(329) = 46 with 46^4*329 = 90^4 + 195^4 - 6199^2 and 6199 < 46^2*329.
a(414) = 21 with 21^4*414 = 135^4 + 415^4 - 172954^2 and 172954 < 21^2*414.
a(554) = 74 with 74^4*554 = 475^4 + 710^4 - 537039^2 and 537039 < 74^2*554.
(End)
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)];
    tab={};Do[m=1; Label[bb]; k=m^4; Do[If[QQ[k*n+z^2-x^4],
    tab=Append[tab,m];Goto[aa]],{z,0,m^2*n},{x,0,((k*n+z^2)/2)^(1/4)}]; m=m+1; Goto[bb];Label[aa],{n,0,100}];Print[tab]
Showing 1-4 of 4 results.