cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351307 Sum of the squares of the square divisors of n.

This page as a plain text file.
%I A351307 #32 Jul 19 2025 10:11:41
%S A351307 1,1,1,17,1,1,1,17,82,1,1,17,1,1,1,273,1,82,1,17,1,1,1,17,626,1,82,17,
%T A351307 1,1,1,273,1,1,1,1394,1,1,1,17,1,1,1,17,82,1,1,273,2402,626,1,17,1,82,
%U A351307 1,17,1,1,1,17,1,1,82,4369,1,1,1,17,1,1,1,1394,1,1,626,17,1,1
%N A351307 Sum of the squares of the square divisors of n.
%C A351307 Inverse Möbius transform of n^2 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 20 2024
%H A351307 Michael De Vlieger, <a href="/A351307/b351307.txt">Table of n, a(n) for n = 1..10000</a>
%F A351307 a(n) = Sum_{d^2|n} (d^2)^2.
%F A351307 Multiplicative with a(p) = (p^(4*(1+floor(e/2))) - 1)/(p^4 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351307 G.f.: Sum_{k>0} k^4*x^(k^2)/(1-x^(k^2)). - _Seiichi Manyama_, Feb 12 2022
%F A351307 From _Amiram Eldar_, Sep 19 2023: (Start)
%F A351307 Dirichlet g.f.: zeta(s) * zeta(2*s-4).
%F A351307 Sum_{k=1..n} a(k) ~ (zeta(5/2)/5) * n^(5/2). (End)
%F A351307 a(n) = Sum_{d|n} d^2 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 20 2024
%F A351307 a(n) = Sum_{d|n} lambda(d)*d^2*sigma_2(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 18 2025
%e A351307 a(16) = 273; a(16) = Sum_{d^2|16} (d^2)^2 = (1^2)^2 + (2^2)^2 + (4^2)^2 = 273.
%t A351307 f[p_, e_] := (p^(4*(1 + Floor[e/2])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%o A351307 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^4*x^k^2/(1-x^k^2))) \\ _Seiichi Manyama_, Feb 12 2022
%o A351307 (Python)
%o A351307 from math import prod
%o A351307 from sympy import factorint
%o A351307 def A351307(n): return prod((p**(4+((e&-2)<<1))-1)//(p**4-1) for p,e in factorint(n).items()) # _Chai Wah Wu_, Jul 11 2024
%Y A351307 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), this sequence (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
%Y A351307 Cf. A010052, A247041 (zeta(5/2)), A008836, A001157.
%K A351307 nonn,easy,mult
%O A351307 1,4
%A A351307 _Wesley Ivan Hurt_, Feb 06 2022