cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351308 Sum of the cubes of the square divisors of n.

This page as a plain text file.
%I A351308 #31 Jul 19 2025 10:13:01
%S A351308 1,1,1,65,1,1,1,65,730,1,1,65,1,1,1,4161,1,730,1,65,1,1,1,65,15626,1,
%T A351308 730,65,1,1,1,4161,1,1,1,47450,1,1,1,65,1,1,1,65,730,1,1,4161,117650,
%U A351308 15626,1,65,1,730,1,65,1,1,1,65,1,1,730,266305,1,1,1,65,1,1,1,47450,1
%N A351308 Sum of the cubes of the square divisors of n.
%C A351308 Inverse Möbius transform of n^3 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 20 2024
%H A351308 Michael De Vlieger, <a href="/A351308/b351308.txt">Table of n, a(n) for n = 1..10000</a>
%F A351308 a(n) = Sum_{d^2|n} (d^2)^3.
%F A351308 Multiplicative with a(p) = (p^(6*(1+floor(e/2))) - 1)/(p^6 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351308 From _Amiram Eldar_, Sep 19 2023: (Start)
%F A351308 Dirichlet g.f.: zeta(s) * zeta(2*s-6).
%F A351308 Sum_{k=1..n} a(k) ~ (zeta(7/2)/7) * n^(7/2). (End)
%F A351308 G.f.: Sum_{k>=1} k^6 * x^(k^2) / (1 - x^(k^2)). - _Ilya Gutkovskiy_, Jun 05 2024
%F A351308 a(n) = Sum_{d|n} d^3 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 20 2024
%F A351308 a(n) = Sum_{d|n} lambda(d)*d^3*sigma_3(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 18 2025
%e A351308 a(16) = 4161; a(16) = Sum_{d^2|16} (d^2)^3 = (1^2)^3 + (2^2)^3 + (4^2)^3 = 4161.
%t A351308 f[p_, e_] := (p^(6*(1 + Floor[e/2])) - 1)/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%o A351308 (PARI) a(n) = sumdiv(n, d, if (issquare(d), d^3)); \\ _Michel Marcus_, Mar 24 2023
%Y A351308 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), this sequence (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
%Y A351308 Cf. A010052, A261804 (zeta(7/2)), A008836, A001158.
%K A351308 nonn,easy,mult
%O A351308 1,4
%A A351308 _Wesley Ivan Hurt_, Feb 06 2022