cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351309 Sum of the 4th powers of the square divisors of n.

This page as a plain text file.
%I A351309 #32 Jul 19 2025 11:57:34
%S A351309 1,1,1,257,1,1,1,257,6562,1,1,257,1,1,1,65793,1,6562,1,257,1,1,1,257,
%T A351309 390626,1,6562,257,1,1,1,65793,1,1,1,1686434,1,1,1,257,1,1,1,257,6562,
%U A351309 1,1,65793,5764802,390626,1,257,1,6562,1,257,1,1,1,257,1,1,6562,16843009,1
%N A351309 Sum of the 4th powers of the square divisors of n.
%C A351309 Inverse Möbius transform of n^4 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 29 2024
%H A351309 Michael De Vlieger, <a href="/A351309/b351309.txt">Table of n, a(n) for n = 1..10000</a>
%F A351309 a(n) = Sum_{d^2|n} (d^2)^4.
%F A351309 Multiplicative with a(p) = (p^(8*(1+floor(e/2))) - 1)/(p^8 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351309 From _Amiram Eldar_, Sep 20 2023: (Start)
%F A351309 Dirichlet g.f.: zeta(s) * zeta(2*s-8).
%F A351309 Sum_{k=1..n} a(k) ~ (zeta(9/2)/9) * n^(9/2). (End)
%F A351309 G.f.: Sum_{k>=1} k^8 * x^(k^2) / (1 - x^(k^2)). - _Ilya Gutkovskiy_, Jun 05 2024
%F A351309 a(n) = Sum_{d|n} d^4 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 29 2024
%F A351309 a(n) = Sum_{d|n} lambda(d)*d^4*sigma_4(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025
%e A351309 a(16) = 65793; a(16) = Sum_{d^2|16} (d^2)^4 = (1^2)^4 + (2^2)^4 + (4^2)^4 = 65793.
%t A351309 f[p_, e_] := (p^(8*(1 + Floor[e/2])) - 1)/(p^8 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%t A351309 Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^4],{n,70}] (* _Harvey P. Dale_, Feb 11 2023 *)
%o A351309 (PARI) a(n) = sumdiv(n, d, if (issquare(d), d^4)); \\ _Michel Marcus_, Jun 05 2024
%Y A351309 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), this sequence (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
%Y A351309 Cf. A010052, A008836, A001159.
%K A351309 nonn,easy,mult
%O A351309 1,4
%A A351309 _Wesley Ivan Hurt_, Feb 06 2022