cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351310 Sum of the 5th powers of the square divisors of n.

This page as a plain text file.
%I A351310 #24 Jul 19 2025 11:57:23
%S A351310 1,1,1,1025,1,1,1,1025,59050,1,1,1025,1,1,1,1049601,1,59050,1,1025,1,
%T A351310 1,1,1025,9765626,1,59050,1025,1,1,1,1049601,1,1,1,60526250,1,1,1,
%U A351310 1025,1,1,1,1025,59050,1,1,1049601,282475250,9765626,1,1025,1,59050,1,1025,1,1
%N A351310 Sum of the 5th powers of the square divisors of n.
%C A351310 Inverse Möbius transform of n^5 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024
%H A351310 Michael De Vlieger, <a href="/A351310/b351310.txt">Table of n, a(n) for n = 1..10000</a>
%F A351310 a(n) = Sum_{d^2|n} (d^2)^5.
%F A351310 Multiplicative with a(p) = (p^(10*(1+floor(e/2))) - 1)/(p^10 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351310 From _Amiram Eldar_, Sep 20 2023: (Start)
%F A351310 Dirichlet g.f.: zeta(s) * zeta(2*s-10).
%F A351310 Sum_{k=1..n} a(k) ~ (zeta(11/2)/11) * n^(11/2). (End)
%F A351310 a(n) = Sum_{d|n} d^5 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024
%F A351310 a(n) = Sum_{d|n} lambda(d)*d^5*sigma_5(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025
%e A351310 a(16) = 1049601; a(16) = Sum_{d^2|16} (d^2)^5 = (1^2)^5 + (2^2)^5 + (4^2)^5 = 1049601.
%t A351310 f[p_, e_] := (p^(10*(1 + Floor[e/2])) - 1)/(p^10 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%Y A351310 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), this sequence (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
%Y A351310 Cf. A010052, A008836, A001160.
%K A351310 nonn,easy,mult
%O A351310 1,4
%A A351310 _Wesley Ivan Hurt_, Feb 06 2022