cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351311 Sum of the 6th powers of the square divisors of n.

This page as a plain text file.
%I A351311 #24 Jul 19 2025 11:57:51
%S A351311 1,1,1,4097,1,1,1,4097,531442,1,1,4097,1,1,1,16781313,1,531442,1,4097,
%T A351311 1,1,1,4097,244140626,1,531442,4097,1,1,1,16781313,1,1,1,2177317874,1,
%U A351311 1,1,4097,1,1,1,4097,531442,1,1,16781313,13841287202,244140626,1,4097,1,531442,1
%N A351311 Sum of the 6th powers of the square divisors of n.
%C A351311 Inverse Möbius transform of n^6 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024
%H A351311 Michael De Vlieger, <a href="/A351311/b351311.txt">Table of n, a(n) for n = 1..10000</a>
%F A351311 a(n) = Sum_{d^2|n} (d^2)^6.
%F A351311 Multiplicative with a(p) = (p^(12*(1+floor(e/2))) - 1)/(p^12 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351311 From _Amiram Eldar_, Sep 20 2023: (Start)
%F A351311 Dirichlet g.f.: zeta(s) * zeta(2*s-12).
%F A351311 Sum_{k=1..n} a(k) ~ (zeta(13/2)/13) * n^(13/2). (End)
%F A351311 a(n) = Sum_{d|n} d^6 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024
%F A351311 a(n) = Sum_{d|n} lambda(d)*d^6*sigma_6(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025
%e A351311 a(16) = 16781313; a(16) = Sum_{d^2|16} (d^2)^6 = (1^2)^6 + (2^2)^6 + (4^2)^6 = 16781313.
%t A351311 f[p_, e_] := (p^(12*(1 + Floor[e/2])) - 1)/(p^12 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%Y A351311 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), this sequence (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
%Y A351311 Cf. A010052, A008836, A013954.
%K A351311 nonn,easy,mult
%O A351311 1,4
%A A351311 _Wesley Ivan Hurt_, Feb 06 2022