cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351313 Sum of the 7th powers of the square divisors of n.

This page as a plain text file.
%I A351313 #23 Jul 19 2025 12:30:22
%S A351313 1,1,1,16385,1,1,1,16385,4782970,1,1,16385,1,1,1,268451841,1,4782970,
%T A351313 1,16385,1,1,1,16385,6103515626,1,4782970,16385,1,1,1,268451841,1,1,1,
%U A351313 78368963450,1,1,1,16385,1,1,1,16385,4782970,1,1,268451841,678223072850,6103515626,1
%N A351313 Sum of the 7th powers of the square divisors of n.
%C A351313 Inverse Möbius transform of n^7 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024
%H A351313 Michael De Vlieger, <a href="/A351313/b351313.txt">Table of n, a(n) for n = 1..10000</a>
%F A351313 a(n) = Sum_{d^2|n} (d^2)^7.
%F A351313 Multiplicative with a(p) = (p^(14*(1+floor(e/2))) - 1)/(p^14 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351313 From _Amiram Eldar_, Sep 20 2023: (Start)
%F A351313 Dirichlet g.f.: zeta(s) * zeta(2*s-14).
%F A351313 Sum_{k=1..n} a(k) ~ (zeta(15/2)/15) * n^(15/2). (End)
%F A351313 a(n) = Sum_{d|n} d^7 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024
%F A351313 a(n) = Sum_{d|n} lambda(d)*d^7*sigma_7(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025
%e A351313 a(16) = 268451841; a(16) = Sum_{d^2|16} (d^2)^7 = (1^2)^7 + (2^2)^7 + (4^2)^7 = 268451841.
%t A351313 f[p_, e_] := (p^(14*(1 + Floor[e/2])) - 1)/(p^14 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%Y A351313 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), this sequence (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).
%Y A351313 Cf. A010052, A008836, A013955.
%K A351313 nonn,easy,mult
%O A351313 1,4
%A A351313 _Wesley Ivan Hurt_, Feb 06 2022