cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351314 Sum of the 8th powers of the square divisors of n.

This page as a plain text file.
%I A351314 #27 Jul 19 2025 13:11:31
%S A351314 1,1,1,65537,1,1,1,65537,43046722,1,1,65537,1,1,1,4295032833,1,
%T A351314 43046722,1,65537,1,1,1,65537,152587890626,1,43046722,65537,1,1,1,
%U A351314 4295032833,1,1,1,2821153019714,1,1,1,65537,1,1,1,65537,43046722,1,1,4295032833,33232930569602,152587890626
%N A351314 Sum of the 8th powers of the square divisors of n.
%C A351314 Inverse Möbius transform of n^8 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024
%H A351314 Seiichi Manyama, <a href="/A351314/b351314.txt">Table of n, a(n) for n = 1..10000</a>
%F A351314 a(n) = Sum_{d^2|n} (d^2)^8.
%F A351314 Multiplicative with a(p) = (p^(16*(1+floor(e/2))) - 1)/(p^16 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351314 G.f.: Sum_{k>0} k^16*x^(k^2)/(1-x^(k^2)). - _Seiichi Manyama_, Feb 12 2022
%F A351314 From _Amiram Eldar_, Sep 20 2023: (Start)
%F A351314 Dirichlet g.f.: zeta(s) * zeta(2*s-16).
%F A351314 Sum_{k=1..n} a(k) ~ (zeta(17/2)/17) * n^(17/2). (End)
%F A351314 a(n) = Sum_{d|n} d^8 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024
%F A351314 a(n) = Sum_{d|n} lambda(d)*d^8*sigma_8(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025
%e A351314 a(16) = 4295032833; a(16) = Sum_{d^2|16} (d^2)^8 = (1^2)^8 + (2^2)^8 + (4^2)^8 = 4295032833.
%t A351314 f[p_, e_] := (p^(16*(1 + Floor[e/2])) - 1)/(p^16 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%t A351314 Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^8],{n,80}] (* _Harvey P. Dale_, Feb 13 2022 *)
%o A351314 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^16*x^k^2/(1-x^k^2))) \\ _Seiichi Manyama_, Feb 12 2022
%Y A351314 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), this sequence (k=8), A351315 (k=9), A351316 (k=10).
%Y A351314 Cf. A010052, A008836, A013956.
%K A351314 nonn,easy,mult
%O A351314 1,4
%A A351314 _Wesley Ivan Hurt_, Feb 06 2022