cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351316 Sum of the 10th powers of the square divisors of n.

This page as a plain text file.
%I A351316 #25 Jul 19 2025 13:11:42
%S A351316 1,1,1,1048577,1,1,1,1048577,3486784402,1,1,1048577,1,1,1,
%T A351316 1099512676353,1,3486784402,1,1048577,1,1,1,1048577,95367431640626,1,
%U A351316 3486784402,1048577,1,1,1,1099512676353,1,1,1,3656161927895954,1,1,1,1048577,1,1,1,1048577,3486784402,1,1
%N A351316 Sum of the 10th powers of the square divisors of n.
%C A351316 Inverse Möbius transform of n^10 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024
%H A351316 Seiichi Manyama, <a href="/A351316/b351316.txt">Table of n, a(n) for n = 1..10000</a>
%F A351316 a(n) = Sum_{d^2|n} (d^2)^10.
%F A351316 Multiplicative with a(p) = (p^(20*(1+floor(e/2))) - 1)/(p^20 - 1). - _Amiram Eldar_, Feb 07 2022
%F A351316 G.f.: Sum_{k>0} k^20*x^(k^2)/(1-x^(k^2)). - _Seiichi Manyama_, Feb 12 2022
%F A351316 From _Amiram Eldar_, Sep 20 2023: (Start)
%F A351316 Dirichlet g.f.: zeta(s) * zeta(2*s-20).
%F A351316 Sum_{k=1..n} a(k) ~ (zeta(21/2)/21) * n^(21/2). (End)
%F A351316 a(n) = Sum_{d|n} d^10 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024
%F A351316 a(n) = Sum_{d|n} lambda(d)*d^10*sigma_10(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025
%e A351316 a(16) = 1099512676353; a(16) = Sum_{d^2|16} (d^2)^10 = (1^2)^10 + (2^2)^10 + (4^2)^10 = 1099512676353.
%t A351316 f[p_, e_] := (p^(20*(1 + Floor[e/2])) - 1)/(p^20 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)
%t A351316 Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^10],{n,50}] (* _Harvey P. Dale_, Aug 24 2024 *)
%o A351316 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^20*x^k^2/(1-x^k^2))) \\ _Seiichi Manyama_, Feb 12 2022
%Y A351316 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), this sequence (k=10).
%Y A351316 Cf. A010052, A008836, A013958.
%K A351316 nonn,easy,mult
%O A351316 1,4
%A A351316 _Wesley Ivan Hurt_, Feb 06 2022