This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351316 #25 Jul 19 2025 13:11:42 %S A351316 1,1,1,1048577,1,1,1,1048577,3486784402,1,1,1048577,1,1,1, %T A351316 1099512676353,1,3486784402,1,1048577,1,1,1,1048577,95367431640626,1, %U A351316 3486784402,1048577,1,1,1,1099512676353,1,1,1,3656161927895954,1,1,1,1048577,1,1,1,1048577,3486784402,1,1 %N A351316 Sum of the 10th powers of the square divisors of n. %C A351316 Inverse Möbius transform of n^10 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024 %H A351316 Seiichi Manyama, <a href="/A351316/b351316.txt">Table of n, a(n) for n = 1..10000</a> %F A351316 a(n) = Sum_{d^2|n} (d^2)^10. %F A351316 Multiplicative with a(p) = (p^(20*(1+floor(e/2))) - 1)/(p^20 - 1). - _Amiram Eldar_, Feb 07 2022 %F A351316 G.f.: Sum_{k>0} k^20*x^(k^2)/(1-x^(k^2)). - _Seiichi Manyama_, Feb 12 2022 %F A351316 From _Amiram Eldar_, Sep 20 2023: (Start) %F A351316 Dirichlet g.f.: zeta(s) * zeta(2*s-20). %F A351316 Sum_{k=1..n} a(k) ~ (zeta(21/2)/21) * n^(21/2). (End) %F A351316 a(n) = Sum_{d|n} d^10 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024 %F A351316 a(n) = Sum_{d|n} lambda(d)*d^10*sigma_10(n/d), where lambda = A008836. - _Ridouane Oudra_, Jul 19 2025 %e A351316 a(16) = 1099512676353; a(16) = Sum_{d^2|16} (d^2)^10 = (1^2)^10 + (2^2)^10 + (4^2)^10 = 1099512676353. %t A351316 f[p_, e_] := (p^(20*(1 + Floor[e/2])) - 1)/(p^20 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *) %t A351316 Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^10],{n,50}] (* _Harvey P. Dale_, Aug 24 2024 *) %o A351316 (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^20*x^k^2/(1-x^k^2))) \\ _Seiichi Manyama_, Feb 12 2022 %Y A351316 Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), this sequence (k=10). %Y A351316 Cf. A010052, A008836, A013958. %K A351316 nonn,easy,mult %O A351316 1,4 %A A351316 _Wesley Ivan Hurt_, Feb 06 2022