cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351322 Number T(n,k) of tilings of a 3k X n rectangle with right trominoes.

This page as a plain text file.
%I A351322 #34 Apr 20 2023 14:55:20
%S A351322 1,1,1,1,0,1,1,0,2,1,1,0,4,0,1,1,0,8,8,4,1,1,0,16,0,18,0,1,1,0,32,64,
%T A351322 88,72,8,1,1,0,64,0,468,384,162,0,1,1,0,128,512,2672,8544,4312,520,16,
%U A351322 1,1,0,256,0,16072,76800,118586,22656,1514,0,1,1,0,512,4096,100064,1168512,3403624,1795360,204184,4312,32,1
%N A351322 Number T(n,k) of tilings of a 3k X n rectangle with right trominoes.
%C A351322 The table is read by descending antidiagonals.
%C A351322 If read by columns or rows:
%C A351322 T(n,1) = A077957(n+1)
%C A351322 T(2,k) = A000079(k) = 2^k
%C A351322 T(4,k) = A046984(k)
%C A351322 T(5,k) = A084478(k)
%C A351322 T(n,2) = A351323(n)
%C A351322 T(7,k) = A351324(k)
%C A351322 Linear recurrences with different numbers of parameters are known for the sequences above.
%C A351322 Overview:
%C A351322   Constant                 Number of
%C A351322 side length   Sequence    parameters
%C A351322     2           T(2,k)        1
%C A351322     3       T(n,1),T(3,k)     2
%C A351322     4           T(4,k)        3     see A046984
%C A351322     5           T(5,k)        4     see A084478
%C A351322     6       T(n,2),T(6,k)    11     see A351323
%C A351322     7           T(7,k)       17     see A351324
%C A351322     8           T(8,k)      >30
%C A351322     9       T(n,3),T(9,k)   >30
%H A351322 Andrew Howroyd, <a href="/A351322/b351322.txt">Table of n, a(n) for n = 0..495</a> (first 31 antidiagonals).
%H A351322 Gerhard Kirchner, <a href="/A351322/a351322_2.pdf">Tiling algorithm</a>
%H A351322 Gerhard Kirchner, <a href="/A351322/a351322.txt">Maxima Code</a>
%H A351322 Gerhard Kirchner, <a href="/A351322/a351322_1.txt">More sequences</a>
%H A351322 Cristopher Moore, <a href="https://arxiv.org/abs/math/9905012">Some Polyomino Tilings of the Plane</a>, arXiv:math/9905012 [math.CO], 1999.
%e A351322 6 X 2 rectangle: 4 tilings
%e A351322    ___   ___   ___   ___
%e A351322   |  _| |  _| |_  | |_  |
%e A351322   |_| | |_| | | |_| | |_|
%e A351322   |___| |___| |___| |___|
%e A351322   |  _| |_  | |  _| |_  |
%e A351322   |_| | | |_| |_| | | |_|
%e A351322   |___| |___| |___| |___|
%e A351322 .
%e A351322 Table T(n,k) begins:
%e A351322   n\k__0__1______2_________3_____________4
%e A351322    0:  1  1      1         1             1
%e A351322    1:  1  0      0         0             0
%e A351322    2:  1  2      4         8            16
%e A351322    3:  1  0      8         0            64
%e A351322    4:  1  4     18        88           468
%e A351322    5:  1  0     72       384          8544
%e A351322    6:  1  8    162      4312        118586
%e A351322    7:  1  0    520     22656       1795360
%e A351322    8:  1 16   1514    204184      29986082
%e A351322    9:  1  0   4312   1193600     467966840
%e A351322   10:  1 32  13242   9567192    7758809670
%e A351322   11:  1  0  39088  63112256  124693887784
%o A351322 (Maxima) See Maxima Code link.
%Y A351322 Cf. A077957, A000079, A046984, A084478, A351323, A351324.
%K A351322 nonn,tabl
%O A351322 0,9
%A A351322 _Gerhard Kirchner_, Feb 21 2022