A351341 Least nonnegative integer m such that n = x^4 + y^4 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m.
0, 0, 0, 63, 3, 3, 4, 2, 2, 2, 4, 21, 37, 6, 1, 1, 0, 0, 4, 11, 7, 14, 5, 2, 2, 4, 8, 3, 3, 5, 1, 1, 0, 4, 4, 45, 5, 5, 11, 6, 6, 6, 32, 3, 7, 11, 3, 3, 6, 8, 8, 48, 13, 3, 3, 3, 6, 6, 31, 20, 93, 55, 3, 49, 33, 2, 2, 5, 5, 3, 3, 4, 2, 2, 2, 69, 17, 29, 11, 1, 1, 0, 0, 5, 61, 29, 8, 5, 2, 2, 4, 21, 29, 51, 6, 1, 1, 0, 4, 85, 13
Offset: 0
Keywords
Examples
a(60) = 93 with 60 = 25^4 + 27^4 - (49^3 + 93^3). a(527) = 527 with 527 = 29^4 + 110^4 - (91^3 + 527^3). a(2198) = 1704 with 2198 = 85^4 + 304^4 - (1539^3 + 1704^3). a(4843) = 1965 with 4843 = 142^4 + 338^4 - (1804^3 + 1965^3).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
QQ[n_]:=IntegerQ[n^(1/4)]; tab={};Do[m=0;Label[bb]; k=m^3;Do[If[QQ[n+k+x^3-y^4], tab=Append[tab,m];Goto[aa]],{x,0,m},{y,0,((n+k+x^3)/2)^(1/4)}];m=m+1;Goto[bb];Label[aa],{n, 0, 100}];Print[tab]
Comments