cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351346 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2*p^(-s) - p^(-2*s)).

This page as a plain text file.
%I A351346 #16 Feb 15 2022 10:59:09
%S A351346 1,2,2,5,2,4,2,12,5,4,2,10,2,4,4,29,2,10,2,10,4,4,2,24,5,4,12,10,2,8,
%T A351346 2,70,4,4,4,25,2,4,4,24,2,8,2,10,10,4,2,58,5,10,4,10,2,24,4,24,4,4,2,
%U A351346 20,2,4,10,169,4,8,2,10,4,8,2,60,2,4,10,10,4,8,2,58,29,4,2,20,4,4,4,24,2,20
%N A351346 Dirichlet g.f.: Product_{p prime} 1 / (1 - 2*p^(-s) - p^(-2*s)).
%H A351346 Amiram Eldar, <a href="/A351346/b351346.txt">Table of n, a(n) for n = 1..10000</a>
%H A351346 Vaclav Kotesovec, <a href="/A351346/a351346.jpg">Graph - the asymptotic ratio (2*10^8 terms)</a>
%F A351346 Multiplicative with a(p^e) = Pell(e+1).
%F A351346 From _Vaclav Kotesovec_, Feb 11 2022: (Start)
%F A351346 Sum_{k=1..n} a(k) ~ c * n^s, where
%F A351346 s = log(1 + sqrt(2)) / log(2) = 1.271553303163611972...,
%F A351346 c = 8.3717222015175571... = (1 + sqrt(2)) / (2^(3/2) * log(1 + sqrt(2))) * Product_{p primes > 2} 1 / (1 - 2*p^(-s) - p^(-2*s)),
%F A351346 or with better convergence
%F A351346 c = zeta(s)^2 / (sqrt(2) * (1 + sqrt(2)) * log(1 + sqrt(2))) * Product_{p primes > 2} (1 - p^(-s))^2 / (1 - 2*p^(-s) - p^(-2*s)). (End)
%t A351346 f[p_, e_] := Fibonacci[e + 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 90}]
%o A351346 (PARI) for(n=1, 100, print1(direuler(p=2, n, 1/(1 - 2*X - X^2))[n], ", ")) \\ _Vaclav Kotesovec_, Feb 10 2022
%Y A351346 Cf. A000129, A351219, A351347, A351348.
%K A351346 nonn,mult
%O A351346 1,2
%A A351346 _Ilya Gutkovskiy_, Feb 08 2022