This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351349 #14 Feb 19 2022 14:20:48 %S A351349 1,1,1,4,4,81,9,16,16,576,36,36,64,81,1250,100,144,144,8100,225 %N A351349 Numerator of the square of the radius of the largest circle, centered at the origin, around which a Racetrack car (using Moore neighborhood) can run a full lap in n steps. %C A351349 The car starts and finishes on the positive x-axis, as in A351041. %C A351349 The square of the radius of the largest circle is a rational number, because the squared distance from the origin to a line segment between two points with integer coordinates is always rational. %H A351349 Pontus von Brömssen, <a href="/A351349/a351349.svg">Some optimal Racetrack trajectories for A351349/A351350</a>. %H A351349 Wikipedia, <a href="https://en.wikipedia.org/wiki/Racetrack_(game)">Racetrack</a> %F A351349 a(n)/A351350(n) >= A351351(n)/A351352(n). %e A351349 The following diagrams show examples of optimal trajectories for some values of n. The position of the car after k steps is labeled with the number k. If a number is missing, it means that the car stands still on that step. If the number 0 is missing (for the starting position), it means that the starting and finishing positions coincide. The origin is marked with an asterisk. %e A351349 . %e A351349 n = 6 (r^2 = 1/2 = a(6)/A351350(6)): %e A351349 . 1 . %e A351349 3 * 6 %e A351349 4 5 . %e A351349 . %e A351349 n = 7 (r^2 = 1 = a(7)/A351350(7)): %e A351349 . 2 . 1 . %e A351349 3 . * . 7 %e A351349 . 5 . 6 . %e A351349 . %e A351349 n = 9 (r^2 = 4 = a(9)/A351350(9)): %e A351349 . 3 . 2 . %e A351349 4 . . . 1 %e A351349 . . * . 9 %e A351349 5 . . . 8 %e A351349 . 6 . 7 . %e A351349 . %e A351349 n = 11 (r^2 = 81/10 = a(11)/A351350(11)): %e A351349 . 4 . 3 . . . . . . %e A351349 5 . . . . . 2 . . . %e A351349 . . . . . . . . 1 . %e A351349 6 . . * . . . . 11 0 %e A351349 . . . . . . . . . . %e A351349 7 . . . . . 10 . . . %e A351349 . 8 . 9 . . . . . . %e A351349 . %e A351349 n = 12 (r^2 = 9 = a(12)/A351350(12)): %e A351349 . . . 4 . 3 . . . %e A351349 . 5 . . . . . 2 . %e A351349 . . . . . . . . 1 %e A351349 6 . . . * . . . 12 %e A351349 7 . . . . . . . . %e A351349 . 8 . . . . . 11 . %e A351349 . . . 9 . 10 . . . %Y A351349 Cf. A351041, A351350 (denominators), A351351, A351352. %K A351349 nonn,frac,more %O A351349 6,4 %A A351349 _Pontus von Brömssen_, Feb 09 2022