cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351349 Numerator of the square of the radius of the largest circle, centered at the origin, around which a Racetrack car (using Moore neighborhood) can run a full lap in n steps.

This page as a plain text file.
%I A351349 #14 Feb 19 2022 14:20:48
%S A351349 1,1,1,4,4,81,9,16,16,576,36,36,64,81,1250,100,144,144,8100,225
%N A351349 Numerator of the square of the radius of the largest circle, centered at the origin, around which a Racetrack car (using Moore neighborhood) can run a full lap in n steps.
%C A351349 The car starts and finishes on the positive x-axis, as in A351041.
%C A351349 The square of the radius of the largest circle is a rational number, because the squared distance from the origin to a line segment between two points with integer coordinates is always rational.
%H A351349 Pontus von Brömssen, <a href="/A351349/a351349.svg">Some optimal Racetrack trajectories for A351349/A351350</a>.
%H A351349 Wikipedia, <a href="https://en.wikipedia.org/wiki/Racetrack_(game)">Racetrack</a>
%F A351349 a(n)/A351350(n) >= A351351(n)/A351352(n).
%e A351349 The following diagrams show examples of optimal trajectories for some values of n. The position of the car after k steps is labeled with the number k. If a number is missing, it means that the car stands still on that step. If the number 0 is missing (for the starting position), it means that the starting and finishing positions coincide. The origin is marked with an asterisk.
%e A351349 .
%e A351349   n = 6 (r^2 = 1/2 = a(6)/A351350(6)):
%e A351349   .  1  .
%e A351349   3  *  6
%e A351349   4  5  .
%e A351349 .
%e A351349   n = 7 (r^2 = 1 = a(7)/A351350(7)):
%e A351349   .  2  .  1  .
%e A351349   3  .  *  .  7
%e A351349   .  5  .  6  .
%e A351349 .
%e A351349   n = 9 (r^2 = 4 = a(9)/A351350(9)):
%e A351349   .  3  .  2  .
%e A351349   4  .  .  .  1
%e A351349   .  .  *  .  9
%e A351349   5  .  .  .  8
%e A351349   .  6  .  7  .
%e A351349 .
%e A351349   n = 11 (r^2 = 81/10 = a(11)/A351350(11)):
%e A351349   .  4  .  3  .  .  .  .  .  .
%e A351349   5  .  .  .  .  .  2  .  .  .
%e A351349   .  .  .  .  .  .  .  .  1  .
%e A351349   6  .  .  *  .  .  .  . 11  0
%e A351349   .  .  .  .  .  .  .  .  .  .
%e A351349   7  .  .  .  .  . 10  .  .  .
%e A351349   .  8  .  9  .  .  .  .  .  .
%e A351349 .
%e A351349   n = 12 (r^2 = 9 = a(12)/A351350(12)):
%e A351349   .  .  .  4  .  3  .  .  .
%e A351349   .  5  .  .  .  .  .  2  .
%e A351349   .  .  .  .  .  .  .  .  1
%e A351349   6  .  .  .  *  .  .  . 12
%e A351349   7  .  .  .  .  .  .  .  .
%e A351349   .  8  .  .  .  .  . 11  .
%e A351349   .  .  .  9  . 10  .  .  .
%Y A351349 Cf. A351041, A351350 (denominators), A351351, A351352.
%K A351349 nonn,frac,more
%O A351349 6,4
%A A351349 _Pontus von Brömssen_, Feb 09 2022