This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351351 #8 Feb 19 2022 14:21:07 %S A351351 1,1,2,2,4,9,9,9,16,32,32,196,81,125,392,1225,100,1681,160,4489,200, %T A351351 225,1369,320,400 %N A351351 Numerator of the square of the radius of the largest circle, centered at the origin, around which a Racetrack car (using von Neumann neighborhood) can run a full lap in n steps. %C A351351 The car starts and finishes on the positive x-axis, as in A351042. %C A351351 The square of the radius of the largest circle is a rational number, because the squared distance from the origin to a line segment between two points with integer coordinates is always rational. %H A351351 Pontus von Brömssen, <a href="/A351351/a351351.svg">Some optimal Racetrack trajectories for A351351/A351352</a>. %H A351351 Wikipedia, <a href="https://en.wikipedia.org/wiki/Racetrack_(game)">Racetrack</a> %F A351351 a(n)/A351352(n) <= A351349(n)/A351350(n). %e A351351 The following diagrams show examples of optimal trajectories for some values of n. The position of the car after k steps is labeled with the number k. If a number is missing, it means that the car stands still on that step. If the number 0 is missing (for the starting position), it means that the starting and finishing positions coincide. The origin is marked with an asterisk. %e A351351 . %e A351351 n = 8 (r^2 = 1/2 = a(8)/A351352(8)): %e A351351 . 3 1 %e A351351 4 * 8 %e A351351 5 7 . %e A351351 . %e A351351 n = 9 (r^2 = 1 = a(9)/A351352(9)): %e A351351 . 3 2 . . %e A351351 4 . . 1 . %e A351351 5 . * 0 9 %e A351351 . 6 7 8 . %e A351351 . %e A351351 n = 10 (r^2 = 2 = a(10)/A351352(10)): %e A351351 . . 3 2 . %e A351351 . 4 . . 1 %e A351351 5 . * . 10 %e A351351 6 . . 9 . %e A351351 . 7 8 . . %e A351351 . %e A351351 n = 12 (r^2 = 4 = a(12)/A351352(12)): %e A351351 . 4 3 2 . %e A351351 5 . . . 1 %e A351351 6 . * . 12 %e A351351 7 . . . 11 %e A351351 . 8 9 10 . %e A351351 . %e A351351 n = 13 (r^2 = 9 = a(13)/A351352(13)): %e A351351 . . . 4 . 3 . . . . %e A351351 . 5 . . . . . 2 . . %e A351351 6 . . . . . . . 1 . %e A351351 7 . . . * . . . 0 13 %e A351351 8 . . . . . . . . . %e A351351 . 9 . . . . . 12 . . %e A351351 . . . 10 . 11 . . . . %Y A351351 Cf. A351042, A351349, A351350, A351352 (denominators). %K A351351 nonn,frac,more %O A351351 8,3 %A A351351 _Pontus von Brömssen_, Feb 09 2022