cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351351 Numerator of the square of the radius of the largest circle, centered at the origin, around which a Racetrack car (using von Neumann neighborhood) can run a full lap in n steps.

This page as a plain text file.
%I A351351 #8 Feb 19 2022 14:21:07
%S A351351 1,1,2,2,4,9,9,9,16,32,32,196,81,125,392,1225,100,1681,160,4489,200,
%T A351351 225,1369,320,400
%N A351351 Numerator of the square of the radius of the largest circle, centered at the origin, around which a Racetrack car (using von Neumann neighborhood) can run a full lap in n steps.
%C A351351 The car starts and finishes on the positive x-axis, as in A351042.
%C A351351 The square of the radius of the largest circle is a rational number, because the squared distance from the origin to a line segment between two points with integer coordinates is always rational.
%H A351351 Pontus von Brömssen, <a href="/A351351/a351351.svg">Some optimal Racetrack trajectories for A351351/A351352</a>.
%H A351351 Wikipedia, <a href="https://en.wikipedia.org/wiki/Racetrack_(game)">Racetrack</a>
%F A351351 a(n)/A351352(n) <= A351349(n)/A351350(n).
%e A351351 The following diagrams show examples of optimal trajectories for some values of n. The position of the car after k steps is labeled with the number k. If a number is missing, it means that the car stands still on that step. If the number 0 is missing (for the starting position), it means that the starting and finishing positions coincide. The origin is marked with an asterisk.
%e A351351 .
%e A351351   n = 8 (r^2 = 1/2 = a(8)/A351352(8)):
%e A351351   .  3  1
%e A351351   4  *  8
%e A351351   5  7  .
%e A351351 .
%e A351351   n = 9 (r^2 = 1 = a(9)/A351352(9)):
%e A351351   .  3  2  .  .
%e A351351   4  .  .  1  .
%e A351351   5  .  *  0  9
%e A351351   .  6  7  8  .
%e A351351 .
%e A351351   n = 10 (r^2 = 2 = a(10)/A351352(10)):
%e A351351   .  .  3  2  .
%e A351351   .  4  .  .  1
%e A351351   5  .  *  . 10
%e A351351   6  .  .  9  .
%e A351351   .  7  8  .  .
%e A351351 .
%e A351351   n = 12 (r^2 = 4 = a(12)/A351352(12)):
%e A351351   .  4  3  2  .
%e A351351   5  .  .  .  1
%e A351351   6  .  *  . 12
%e A351351   7  .  .  . 11
%e A351351   .  8  9 10  .
%e A351351 .
%e A351351   n = 13 (r^2 = 9 = a(13)/A351352(13)):
%e A351351   .  .  .  4  .  3  .  .  .  .
%e A351351   .  5  .  .  .  .  .  2  .  .
%e A351351   6  .  .  .  .  .  .  .  1  .
%e A351351   7  .  .  .  *  .  .  .  0 13
%e A351351   8  .  .  .  .  .  .  .  .  .
%e A351351   .  9  .  .  .  .  . 12  .  .
%e A351351   .  .  . 10  . 11  .  .  .  .
%Y A351351 Cf. A351042, A351349, A351350, A351352 (denominators).
%K A351351 nonn,frac,more
%O A351351 8,3
%A A351351 _Pontus von Brömssen_, Feb 09 2022