This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351372 #37 Feb 16 2022 12:48:20 %S A351372 1,1,1,1,1,3,1,3,13,1,13,61,3,13,217,1,61,291,1,291,1393,3,217,3673, %T A351372 13,61,4683,1,1393,6673,13,217,16693,1,6673,31971,3,3673,62221,61,291, %U A351372 106153,1,31971,153181,13,4683,360517,1,153181,733933,3,62221,1054081 %N A351372 Array of triples (x,y,z) satisfy the Diophantine equation (x+y)^2 + (y+z)^2 + (z+x)^2 = 12*x*y*z, 1 <= x <= y <= z. (sorted by z). %H A351372 Chai Wah Wu, <a href="/A351372/b351372.txt">Table of n, a(n) for n = 1..10002</a> %H A351372 Yasuaki Gyoda, <a href="https://arxiv.org/abs/2109.09639">Positive integer solutions to (x+y)^2+(y+z)^2+(z+x)^2=12xyz</a>, arXiv:2109.09639 [math.NT], 2021. %e A351372 The array of triples begins: %e A351372 ( 1, 1, 1), %e A351372 ( 1, 1, 3), %e A351372 ( 1, 3, 13), %e A351372 ( 1, 13, 61), %e A351372 ( 3, 13, 217), %e A351372 ( 1, 61, 291), %e A351372 ( 1, 291, 1393), %e A351372 ( 3, 217, 3673), %e A351372 (13, 61, 4683), %e A351372 ( 1, 1393, 6673), %e A351372 (13, 217, 16693), %e A351372 ... %o A351372 (PARI) N=5000; %o A351372 for(k=1, N, for(j=1, k, for(i=1, j, if(i*j>k, break); if((i+j)^2+(j+k)^2+(k+i)^2==12*i*j*k, print1(i, ", ", j, ", ", k, ", "))))); %o A351372 (Python) %o A351372 from math import isqrt %o A351372 from itertools import count, islice %o A351372 def A351372_gen(): # generator of terms %o A351372 for z in count(1): %o A351372 z2 = z**2 %o A351372 for y in range(1,z+1): %o A351372 a = isqrt(d := 3*y**2*(12*z2 - 4*z - 1) - 3*z2*(4*y + 1) - 2*y*z) %o A351372 if a**2 == d: %o A351372 x, r = divmod(12*y*z - 2*y - 2*z - 2*a,4) %o A351372 if y <= x <= z and r == 0: %o A351372 yield from (y,x,z) %o A351372 A351372_list = list(islice(A351372_gen(),21)) # _Chai Wah Wu_, Feb 16 2022 %Y A351372 Cf. A291694. %K A351372 nonn,tabf %O A351372 1,6 %A A351372 _Seiichi Manyama_, Feb 15 2022 %E A351372 More terms from _Chai Wah Wu_, Feb 16 2022