cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351376 Least nonnegative integer m such that n = x^3 + y^3 - (z^5 + m^5) for some nonnegative integers x,y,z with z <= m.

Original entry on oeis.org

0, 0, 0, 2, 76, 3, 1, 1, 0, 0, 6, 5, 4, 7, 1, 1, 0, 51, 129, 14, 22, 2, 2, 4, 136, 1, 1, 0, 0, 27, 7, 2, 2, 1, 1, 0, 3, 3, 14, 2, 2, 44, 11, 5, 8, 6, 101, 4, 4, 28, 14, 6, 1, 1, 0, 17, 42, 33, 2, 2, 20, 2, 1, 1, 0, 0, 3, 8, 3, 2, 1, 1, 0, 3, 6, 41, 3, 43, 12, 10, 10, 6, 6, 6, 59, 29, 33, 81, 2, 1, 1, 0, 2, 2, 2, 2, 2, 3, 3, 3, 2
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 09 2022

Keywords

Comments

Conjecture: a(n) exists for any nonnegative integer n.
See also Conjecture 1 in A351341.

Examples

			a(4) = 76 with 4 = 775^3 + 1397^3 - (58^5 + 76^5).
a(18) = 129 with 18 = 1693^3 + 3137^3 - (3^5 + 129^5).
a(24) = 136 with 24 = 2534^3 + 3116^3 - (0^5 + 136^5).
a(87) = 81 with 87 = 140^3 + 1658^3 - (64^5 + 81^5).
From _Chai Wah Wu_, Feb 21 2022 : (Start)
a(389) = 3883 with 389 = 590621^3 + 877987^3 - (612^5 + 3883^5).
a(4173) = 3978 with 4173 = 16112^3 + 1108958^3 - (3259^5 + 3978^5).
(End)
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=IntegerQ[n^(1/3)];
    tab={};Do[m=0;Label[bb]; k=m^5;Do[If[CQ[n+k+x^5-y^3], tab=Append[tab,m];Goto[aa]],{x,0,m},{y,0,((n+k+x^5)/2)^(1/3)}];m=m+1;Goto[bb];Label[aa],{n,0,100}];Print[tab]

A351832 Least nonnegative integer m such that n = x^6 + y^6 - (z^2 + m^2) for some nonnegative integers x,y,z with z <= m.

Original entry on oeis.org

0, 0, 0, 6, 6, 20, 7, 7, 19, 24, 24, 7, 6, 6, 5, 5, 7, 26, 26, 6, 6, 22, 9, 5, 5, 6, 98, 6, 6, 6, 5, 5, 4, 4, 32, 5, 5, 26, 5, 4, 4, 20, 322, 7, 4, 4, 3, 3, 4, 4, 22, 3, 3, 22, 3, 3, 2, 2, 418, 2, 2, 2, 1, 1, 0, 0, 94, 6, 23, 20, 7, 19, 24, 20, 20, 7, 6, 22, 5, 7, 19, 18, 18, 6, 22, 37, 59, 5, 6, 24, 24, 6, 6, 21
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 21 2022

Keywords

Comments

Conjecture: a(n) exists for each nonnegative integer n.
See also Conjecture 2 in A351341.

Examples

			a(170) = 2730 with 170 = 9^6 + 15^6 - (2114^2 + 2730^2).
a(5938) = 16184 with 5938 = 17^6 + 25^6 - (2520^2 + 16184^2).
a(9746) = 7600 with 9746 = 11^6 + 21^6 - (5456^2 + 7600^2).
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=IntegerQ[n^(1/6)];
    tab={};Do[m=0; Label[bb]; k=m^2; Do[If[QQ[n+k+x^2-y^6], tab=Append[tab,m];Goto[aa]],  {x, 0, m}, {y, 0, ((n+k+x^2)/2)^(1/6)}];m=m+1; Goto[bb]; Label[aa], {n, 0, 100}];Print[tab]
Showing 1-2 of 2 results.