cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351380 Table read by rows: T(n,k) is the number of integers in the interval [2^(n-1), 2^n - 1] that have the k-th least prime signature.

This page as a plain text file.
%I A351380 #4 Feb 16 2022 23:25:23
%S A351380 1,0,2,0,2,1,1,0,2,1,3,1,1,0,5,1,3,1,3,1,1,1,0,7,1,11,0,5,0,3,1,1,1,1,
%T A351380 1,0,13,1,19,1,9,1,2,7,0,1,2,3,1,2,1,1,0,23,1,39,0,14,0,8,16,1,2,3,9,
%U A351380 0,1,2,1,1,1,2,1,1,1,1,0,43,2,73,1,27,0,11,37,0,2,6,20,0,2,3,8,0,2,4,2,4,0,1,1,1,2,1,1,1,1
%N A351380 Table read by rows: T(n,k) is the number of integers in the interval [2^(n-1), 2^n - 1] that have the k-th least prime signature.
%C A351380 In rows n = 4 and n = 6..19, T(n,4) is the largest term in the row, i.e., squarefree semiprimes (A006881) outnumber the integers of each of the other prime signatures, but T(20,4) = 106408 < 109245 = T(20,9): among 20-bit numbers, sphenic numbers (A007304) (i.e., products of three distinct primes) are more numerous than squarefree semiprimes.
%F A351380 Sum_{k>=1} T(n,k) = 2^n.
%F A351380 T(n,2) = A162145(n) for n > 1.
%e A351380 The first 7 rows are shown in the body of the table below. Across the top of the table are the terms of A025487, whose k-th term is the smallest integer having the k-th prime signature.
%e A351380 .
%e A351380   A025487(k)| 1  2  4  6  8 12 16 24 30 32 36 48 60 64 72 96 120 ...
%e A351380   ----------+-------------------------------------------------------
%e A351380          n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17  ...
%e A351380   ----------+-------------------------------------------------------
%e A351380          1  | 1
%e A351380          2  | 0  2
%e A351380          3  | 0  2  1  1
%e A351380          4  | 0  2  1  3  1  1
%e A351380          5  | 0  5  1  3  1  3  1  1  1
%e A351380          6  | 0  7  1 11  0  5  0  3  1  1  1  1  1
%e A351380          7  | 0 13  1 19  1  9  1  2  7  0  1  2  3  1  2  1  1
%e A351380 .
%e A351380 E.g., the 9 terms in row n=5 are 0, 5, 1, 3, 1, 3, 1, 1, 1 because, of the 16 integers in the interval [2^(5-1), 2^5 - 1] = [16, 31]:
%e A351380   - 0 have prime signature 1 (since all are > 1)
%e A351380   - 5 are primes
%e A351380   - 1 is the square of a prime
%e A351380   - 3 are squarefree semiprimes
%e A351380 etc., as shown below (where p, q, and r represent distinct primes):
%e A351380 .
%e A351380 .                  prime     OEIS
%e A351380   k  A025487(k)  signature  Annnnnn  integers in [16, 31]  T(5,k)
%e A351380   -  ----------  ---------  -------  --------------------  ------
%e A351380   1       1          1         -            (none)            0
%e A351380   2       2          p      A000040   17, 19, 23, 29, 31      5
%e A351380   3       4         p^2     A001248           25              1
%e A351380   4       6        p * q    A006881       21, 22, 26          3
%e A351380   5       8         p^3     A030078           27              1
%e A351380   6      12       p^2 * q   A054753       18, 20, 28          3
%e A351380   7      16         p^4     A030514           16              1
%e A351380   8      24       p^3 * q   A065036           24              1
%e A351380   9      30      p * q * r  A007304           30              1
%Y A351380 Cf. A006881, A007304, A025487, A162145.
%K A351380 nonn,tabf
%O A351380 1,3
%A A351380 _Jon E. Schoenfield_, Feb 09 2022