cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351396 Composite numbers d such that the period k of the decimal expansion of 1/d is > 1 and divides d-1.

Original entry on oeis.org

33, 55, 91, 99, 148, 165, 175, 246, 259, 275, 325, 370, 385, 451, 481, 495, 496, 505, 561, 592, 656, 657, 703, 715, 825, 909, 925, 1035, 1045, 1105, 1233, 1375, 1476, 1480, 1626, 1729, 1825, 1912, 2035, 2120, 2275, 2368, 2409, 2465, 2475, 2525, 2556, 2752, 2821
Offset: 1

Views

Author

Barry Smyth, Mar 24 2022

Keywords

Comments

For primes p, the period k of the decimal expansion of 1/p divides p-1. This is usually not the case for reciprocals of composites d; instead, the period k always divides phi(d) where phi is Euler's totient function (A000010). This sequence lists the composites d for which k also divides d-1, which satisfies the condition of a pseudoprime, making such composites a sequence of pseudoprimes with respect to the divisibility of d-1 by k.

Examples

			33 is a term since 1/33 = 0.030303..., its repetend is 03 so its period is 2, and 2 divides 33-1.
91 is a term since 1/91 = 0.010989010989..., its repetend is 010898 so its period is 6, and 6 divides 91-1.
925000 is a term since 1/925000 = 0.00000108108... has a repetend of 108 and a period of 3, and 3 divides 925000-1.
		

Crossrefs

Cf. A007732 (digits period), A000010 (totient).

Programs

  • Python
    from itertools import count, islice
    from sympy import n_order, multiplicity, isprime
    def A351396_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda d: not (isprime(d) or (p := n_order(10, d//2**multiplicity(2, d)//5**multiplicity(5, d))) <= 1 or (d-1) % p), count(max(startvalue,1)))
    A351396_list = list(islice(A351396_gen(),50)) # Chai Wah Wu, May 19 2022