cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351402 G.f. A(x) satisfies: 1 / (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).

This page as a plain text file.
%I A351402 #6 Feb 10 2022 11:46:36
%S A351402 1,1,-1,-3,-1,1,4,2,-2,-5,4,2,-2,-10,3,10,21,-15,-26,-23,34,28,25,-54,
%T A351402 -18,2,67,-48,-22,-55,116,44,37,-227,-10,32,295,-85,-76,-336,254,74,
%U A351402 250,-451,59,-127,672,-294,-69,-761,740,77,657,-1208,59,-450,1700,-487,241,-1892,1202
%N A351402 G.f. A(x) satisfies: 1 / (1 - x) = Product_{i>=1, j>=1} A(x^(i*j)).
%C A351402 Euler transform of A007427.
%F A351402 G.f. A(x) satisfies: 1 / (1 - x) = Product_{k>=1} A(x^k)^A000005(k).
%F A351402 G.f.: Product_{k>=1} 1 / (1 - x^k)^A007427(k).
%F A351402 G.f.: exp( Sum_{k>=1} A101035(k) * x^k / k ).
%F A351402 a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A101035(k) * a(n-k).
%t A351402 nmax = 60; A007427[n_] := Sum[MoebiusMu[d] MoebiusMu[n/d], {d, Divisors[n]}]; CoefficientList[Series[Product[1/(1 - x^k)^A007427[k], {k, 1, nmax}], {x, 0, nmax}], x]
%Y A351402 Cf. A000005, A006171, A007427, A101035, A117209, A351403.
%K A351402 sign
%O A351402 0,4
%A A351402 _Ilya Gutkovskiy_, Feb 10 2022